Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hum Reprod ; 34(11): 2129-2143, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31713610

ABSTRACT

STUDY QUESTION: Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER: In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY: Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION: Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION: Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS: Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S): We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Liver/enzymology , Maternal Exposure , Metallothionein/metabolism , Smoking/adverse effects , Zinc/blood , Abortion, Induced , Cross-Sectional Studies , Denmark , Dietary Supplements , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Liver/embryology , Placenta/metabolism , Pregnancy , Pregnancy Trimester, First
2.
Front Cell Dev Biol ; 6: 78, 2018.
Article in English | MEDLINE | ID: mdl-30087896

ABSTRACT

Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple biological processes and dysregulation of their expression can cause diseases. Most regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression through epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. Interestingly, differential lncRNA expression profiles in human oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle development has not previously been described. In this study, transcriptome dynamics in human primordial, primary and small antral follicles were interrogated and revealed information of lncRNA genes. It is known that some lncRNAs form a complex with paraspeckle proteins and therefore, we extended our transcriptional analysis to include genes encoding paraspeckle proteins. Primordial, primary follicles and small antral follicles was isolated using laser capture micro-dissection from ovarian tissue donated by three women having ovarian tissue cryopreserved before chemotherapy. After RN sequencing, a bioinformatic class comparison was performed and primordial, primary and small antral follicles were found to express several lncRNA and genes encoding paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1, NEAT2 (MALAT1), and GAS5. Moreover, we noted a high expression of FUS, TAF15, and EWS components of the paraspeckles, proteins that belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and EWS proteins using immunofluorescence. The presence and the dynamics of genes that encode lncRNA and paraspeckle proteins may suggest that these may mediate functions in the cyclic recruitment and differentiation of human follicles and could participate in biological processes known to be associated with lncRNAs and paraspeckle proteins, such as gene expression control, scaffold formation and epigenetic control through human follicle development. This comprehensive transcriptome analysis of lncRNAs and genes encoding paraspeckle proteins expressed in human follicles could potentially provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.

3.
Front Cell Dev Biol ; 6: 85, 2018.
Article in English | MEDLINE | ID: mdl-30148131

ABSTRACT

Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.

4.
Environ Toxicol Pharmacol ; 57: 19-27, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29169084

ABSTRACT

Prenatal exposure to maternal cigarette smoking increases the risk of intrauterine growth retardation, adverse pregnancy outcomes, and diseases later in life. Exposure can result in postnatal global and gene-specific DNA methylation changes, with the latter well documented for the CYP1A1 and AHRR genes involved in the detoxification of xenobiotic substances. This study assessed the impact of exposure to maternal smoking on first trimester fetal CYP1A1 and AHRR mRNA expression and DNA methylation for CpG-sites displaying maternal smoking during pregnancy-mediated methylation changes at birth. The analyses included first trimester (6-12 weeks) placentas (N=39) and livers (N=43). For AHRR, exposure to maternal smoking was associated with increased DNA methylation in the placentas of female fetuses; mRNA expression, however, was unchanged. While exposure to maternal smoking was not associated with AHRR DNA methylation changes in fetal livers; mRNA expression was increased. For CYP1A1, exposure to maternal smoking was not associated with fetal DNA methylation changes whereas mRNA expression increased in placentas and male fetal livers. These results show that first trimester exposure to maternal smoking is associated with CYP1A1 and AHRR DNA methylation and mRNA expression changes. However, the results also indicate that maternal smoking during pregnancy-mediated postnatal CYP1A1 and AHRR DNA methylation changes are not imprinted during the first trimester.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cigarette Smoking/genetics , Cytochrome P-450 CYP1A1/genetics , DNA Methylation , Pregnancy Trimester, First/genetics , Repressor Proteins/genetics , Female , Humans , Liver/metabolism , Male , Maternal Exposure , Maternal-Fetal Exchange , Placenta/metabolism , Pregnancy , RNA, Messenger/metabolism
5.
Sci Rep ; 7(1): 15961, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162857

ABSTRACT

The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1 was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human sex-differentiation is defined, with identification of new genes of potential importance.


Subject(s)
Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Gonads/embryology , Sex Differentiation/genetics , Adolescent , Adult , Cell Count , Female , Genetic Markers , Germ Cells/cytology , Germ Cells/metabolism , Humans , Male , Middle Aged , Reproducibility of Results , Smoking/adverse effects , Staining and Labeling , Steroids/biosynthesis , Time Factors , Young Adult
6.
Clin Epigenetics ; 8: 128, 2016.
Article in English | MEDLINE | ID: mdl-27924165

ABSTRACT

AIMS: Maternal cigarette smoking during pregnancy increases the risk of negative health consequences for the exposed child. Epigenetic mechanisms constitute a likely link between the prenatal exposure to maternal cigarette smoking and the increased risk in later life for diverse pathologies. Maternal smoking induces gene-specific DNA methylation alterations as well as global DNA hypermethylation in the term placentas and hypomethylation in the cord blood. Early pregnancy represents a developmental time where the fetal epigenome is remodeled and accordingly can be expected to be highly prone to exposures with an epigenetic impact. We have assessed the influence of maternal cigarette smoking during the first trimester for fetal global DNA methylation. METHODS AND RESULTS: We analyzed the human fetal intestines and livers as well as the placentas from the first trimester pregnancies. Global DNA methylation levels were quantified with ELISA using a methylcytosine antibody as well as with the bisulfite pyrosequencing of surrogate markers for global methylation status, LINE-1, and AluYb8. We identified gender-specific differences in global DNA methylation levels, but no significant DNA methylation changes in exposure responses to the first trimester maternal cigarette smoking. CONCLUSIONS: Acknowledging that only examining subsets of global DNA methylation markers and fetal sample availability represents possible limitations for the analyses, our presented results indicate that the first trimester maternal cigarette smoking is not manifested in immediate aberrations of fetal global DNA methylation.


Subject(s)
DNA Methylation/drug effects , Fetal Blood/chemistry , Placenta/chemistry , Smoking/adverse effects , Epigenesis, Genetic/drug effects , Female , Humans , Maternal Exposure , Pregnancy , Pregnancy Trimester, First
7.
Reproduction ; 148(6): 635-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25190505

ABSTRACT

Persistent organochlorine pollutants (POPs) are ubiquitous, bioaccumulative compounds with potential endocrine-disrupting effects. They cross the placental barrier thereby resulting in in utero exposure of the developing fetus. The objective of this study was to investigate whether maternal serum concentrations of polychlorinated biphenyls (PCBs) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) during pregnancy are associated with son's semen quality and reproductive hormone levels. During 2008-2009, we recruited 176 male offspring from a Danish cohort of pregnant women who participated in a study in 1988-1989. Each provided semen and blood samples that were analyzed for sperm concentration, total sperm count, motility, and morphology, and reproductive hormone levels, respectively. The maternal blood samples were collected in pregnancy week 30 and were analyzed for the concentrations of six PCBs (PCB-118, -138, -153, -156, -170, and -180) and p,p'-DDE. The potential associations between in utero exposure to ΣPCBs (pmol/ml), Σdioxin like-(DL) PCBs (PCB-118 and -156) (pmol/ml), and p,p'-DDE and semen quality and reproductive hormone levels were investigated using multiple regression. Maternal median (range) exposure levels of ΣPCB, ΣDL-PCB, and p,p'-DDE were 10.0 (2.1-35.0) pmol/ml, 0.8 (0.2-2.7) pmol/ml, and 8.0 (0.7-55.3) pmol/ml, respectively, reflecting typical background exposure levels in the late 1980s in Denmark. Results suggested that in utero exposure to ΣPCB, ΣDL-PCB, and p,p'-DDE was not statistically significantly associated with semen quality measures or reproductive hormone levels. Thus, results based on maternal PCB and p,p'-DDE concentrations alone are not indicative of long-term consequences for male reproductive health; however, we cannot exclude that these POPs in concert with other endocrine-modulating compounds may have adverse effects.


Subject(s)
Environmental Pollutants/adverse effects , Hydrocarbons, Chlorinated/adverse effects , Prenatal Exposure Delayed Effects , Reproductive Health , Semen Analysis , Cohort Studies , Dichlorodiphenyl Dichloroethylene/adverse effects , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Humans , Longitudinal Studies , Luteinizing Hormone/blood , Male , Polychlorinated Biphenyls/adverse effects , Pregnancy , Retrospective Studies , Surveys and Questionnaires , Testosterone/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...