Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Swiss Dent J ; 134(1): 144-157, 2024 Apr 05.
Article in German | MEDLINE | ID: mdl-38741457

ABSTRACT

The clinical impact of platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF®) respectively has been studied extensively in the field of regenerative dentistry during the last two decades. Literature supports evidence for additional benefits in regenerative periodontal therapy, alveolar ridge preservation, management of extraction sockets, implantology including guided bone regeneration as well as defect management in oral surgery. Regarding gingival wound healing and soft tissue regeneration, there is sufficient evidence for their positive effects which have been confirmed in several systematic reviews. The effects seem less clear in conjunction with osseous regenerative treatments, where the inter-study heterogenity in terms of different PRF-protocols, indications and application forms might hinder a systematic comparison. Nevertheless there is evidence that PRF might have beneficial effects on hard-tissue or its regeneration respectively.For being able to facilitate conclusions in systematic reviews, precise reporting of the used PRF-protocols is mandatory for future (clinical) research in the field of autologous platelet concentrates.


Subject(s)
Platelet-Rich Fibrin , Platelet-Rich Plasma , Humans , Guided Tissue Regeneration, Periodontal/methods , Blood Platelets/physiology , Bone Regeneration/physiology , Bone Regeneration/drug effects , Wound Healing/physiology , Wound Healing/drug effects , Regenerative Medicine/methods
2.
Swiss Dent J ; 134(1): 130-143, 2024 Apr 05.
Article in German | MEDLINE | ID: mdl-38741455

ABSTRACT

The use of autologous platelet concentrates (APC) such as platelet-rich fibrin (PRF) and/or plasma rich in growth factors (PRGF®) is considered an established treatment modality in re-generative dentistry. The possibility of delivering growth factors over aclinically relevant time of several days seems particularly interesting in the context of wound healing.The growing body of evidence in the field of APC requires a continuous and actual knowledge of the literature for being able to make evidence-based treatment recommendations with a realistic assessment of possible advantages of this technology.PR(G)F can be applied in solid or liquid form, pure or in combination with other biomaterials. Both appear to be reasonable, depending on the clinical indication and/or desired treatment outcomes. Because of the many different factors that can affect the PR(G)F products final characteristics, a basic understanding of these parameters is desirable for choosing the most suitable product and/or optimizing its clinical application. This review aims to provide an over-view of relevant theoretical, practical, legal and biologic aspects of APCs.


Subject(s)
Platelet-Rich Fibrin , Humans , Platelet-Rich Plasma , Blood Platelets/physiology , Intercellular Signaling Peptides and Proteins/therapeutic use , Wound Healing/physiology
3.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237683

ABSTRACT

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Subject(s)
Phospholipids , Receptors, G-Protein-Coupled , Animals , Biological Transport , Cholesterol , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Cattle , Turkeys
4.
bioRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38045315

ABSTRACT

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.

5.
PLoS Pathog ; 19(8): e1011532, 2023 08.
Article in English | MEDLINE | ID: mdl-37531329

ABSTRACT

The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.


Subject(s)
Antiviral Agents , COVID-19 , Animals , Humans , SARS-CoV-2 , Pandemics , Antibodies, Viral , Antibodies, Neutralizing , Epitopes , Spike Glycoprotein, Coronavirus
6.
Nat Commun ; 14(1): 4365, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474513

ABSTRACT

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.


Subject(s)
Mammals , Animals , Channelrhodopsins/genetics , Cryoelectron Microscopy , Cations/metabolism , Mammals/metabolism
7.
Nat Struct Mol Biol ; 30(4): 502-511, 2023 04.
Article in English | MEDLINE | ID: mdl-36997760

ABSTRACT

Heterotrimeric G proteins serve as membrane-associated signaling hubs, in concert with their cognate G-protein-coupled receptors. Fluorine nuclear magnetic resonance spectroscopy was employed to monitor the conformational equilibria of the human stimulatory G-protein α subunit (Gsα) alone, in the intact Gsαß1γ2 heterotrimer or in complex with membrane-embedded human adenosine A2A receptor (A2AR). The results reveal a concerted equilibrium that is strongly affected by nucleotide and interactions with the ßγ subunit, the lipid bilayer and A2AR. The α1 helix of Gsα exhibits significant intermediate timescale dynamics. The α4ß6 loop and α5 helix undergo membrane/receptor interactions and order-disorder transitions respectively, associated with G-protein activation. The αN helix adopts a key functional state that serves as an allosteric conduit between the ßγ subunit and receptor, while a significant fraction of the ensemble remains tethered to the membrane and receptor upon activation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs , Heterotrimeric GTP-Binding Proteins , Humans , Models, Molecular , GTP-Binding Protein alpha Subunits, Gs/metabolism , Protein Conformation , Heterotrimeric GTP-Binding Proteins/metabolism , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/metabolism , Protein Binding
8.
Sci Rep ; 12(1): 13955, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977989

ABSTRACT

Within the microbial rhodopsin family, heliorhodopsins (HeRs) form a phylogenetically distinct group of light-harvesting retinal proteins with largely unknown functions. We have determined the 1.97 Å resolution X-ray crystal structure of Thermoplasmatales archaeon SG8-52-1 heliorhodopsin (TaHeR) in the presence of NaCl under acidic conditions (pH 4.5), which complements the known 2.4 Å TaHeR structure acquired at pH 8.0. The low pH structure revealed that the hydrophilic Schiff base cavity (SBC) accommodates a chloride anion to stabilize the protonated retinal Schiff base when its primary counterion (Glu-108) is neutralized. Comparison of the two structures at different pH revealed conformational changes connecting the SBC and the extracellular loop linking helices A-B. We corroborated this intramolecular signaling transduction pathway with computational studies, which revealed allosteric network changes propagating from the perturbed SBC to the intracellular and extracellular space, suggesting TaHeR may function as a sensory rhodopsin. This intramolecular signaling mechanism may be conserved among HeRs, as similar changes were observed for HeR 48C12 between its pH 8.8 and pH 4.3 structures. We additionally performed DEER experiments, which suggests that TaHeR forms possible dimer-of-dimer associations which may be integral to its putative functionality as a light sensor in binding a transducer protein.


Subject(s)
Chlorides , Schiff Bases , Binding Sites , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Rhodopsin/chemistry , Rhodopsins, Microbial/chemistry , Schiff Bases/chemistry , Signal Transduction
9.
J Biol Chem ; 298(7): 102083, 2022 07.
Article in English | MEDLINE | ID: mdl-35636514

ABSTRACT

The ubiquitin-proteasome system fulfills an essential role in regulating protein homeostasis by spatially and temporally controlling proteolysis in an ATP- and ubiquitin-dependent manner. However, the localization of proteasomes is highly variable under diverse cellular conditions. In yeast, newly synthesized proteasomes are primarily localized to the nucleus during cell proliferation. Yeast proteasomes are transported into the nucleus through the nuclear pore either as immature subcomplexes or as mature enzymes via adapter proteins Sts1 and Blm10, while in mammalian cells, postmitotic uptake of proteasomes into the nucleus is mediated by AKIRIN2, an adapter protein essentially required for nuclear protein degradation. Stressful growth conditions and the reversible halt of proliferation, that is quiescence, are associated with a decline in ATP and the reorganization of proteasome localization. Cellular stress leads to proteasome accumulation in membraneless granules either in the nucleus or in the cytoplasm. In quiescence, yeast proteasomes are sequestered in an ubiquitin-dependent manner into motile and reversible proteasome storage granules in the cytoplasm. In cancer cells, upon amino acid deprivation, heat shock, osmotic stress, oxidative stress, or the inhibition of either proteasome activity or nuclear export, reversible proteasome foci containing polyubiquitinated substrates are formed by liquid-liquid phase separation in the nucleus. In this review, we summarize recent literature revealing new links between nuclear transport, ubiquitin signaling, and the intracellular organization of proteasomes during cellular stress conditions.


Subject(s)
Proteasome Endopeptidase Complex , Saccharomyces cerevisiae , Active Transport, Cell Nucleus , Adenosine Triphosphate/metabolism , Animals , Cytoplasm/metabolism , Mammals/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism
10.
Structure ; 30(2): 263-277.e5, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34678158

ABSTRACT

Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Inositol Phosphates/metabolism , Rhodopsin/metabolism , Animals , Cattle , Crystallography, X-Ray , Mice , Models, Molecular , Protein Conformation , Protein Domains , Sequence Analysis, RNA , Single-Cell Analysis
12.
Curr Opin Struct Biol ; 69: 177-186, 2021 08.
Article in English | MEDLINE | ID: mdl-34304006

ABSTRACT

Membrane proteins, including ion channels, transporters and G-protein-coupled receptors (GPCRs), play a significant role in various physiological processes. Many of these proteins are difficult to express in large quantities, imposing crucial experimental restrictions. Nevertheless, there is now a wide variety of studies available utilizing electron paramagnetic resonance (EPR) spectroscopic techniques that expand experimental accessibility by using relatively small quantities of protein. Here, we give an overview starting from basic strategies in EPR on membrane proteins with a focus on GPCRs, while emphasizing several applications from recent years. We highlight how the arsenal of EPR-based techniques may provide significant further contributions to understanding the complex molecular machinery and energetic phenomena responsible for seamless workflow in essential biological processes.


Subject(s)
Ion Channels , Membrane Proteins , Electron Spin Resonance Spectroscopy , Receptors, G-Protein-Coupled , Spin Labels
13.
J Am Chem Soc ; 142(40): 17057-17068, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32915556

ABSTRACT

Site-specific modification of proteins with functional molecules provides powerful tools for researching and engineering proteins. Here we report a new chemical conjugation method which photocages highly reactive but chemically selective moieties, enabling the use of protein-inert amines for selective protein modification. New amino acids FnbY and FmnbY, bearing photocaged quinone methides (QMs), were genetically incorporated into proteins. Upon light activation, they generated highly reactive QM, which rapidly reacted with amine derivatives. This method features a rare combination of desired properties including fast kinetics, small and stable linkage, compatibility with low temperature, photocontrollability, and widely available reagents. Moreover, labeling via FnbY occurs on the ß-carbon, affording the shortest linkage to protein backbone which is essential for advanced studies involving orientation and distance. We installed various functionalities onto proteins and attached a spin label as close as possible to the protein backbone, achieving high resolution in double electron-electron paramagnetic resonance distance measurements.


Subject(s)
Amines/chemistry , Indolequinones/chemistry , Proteins/chemistry , Staining and Labeling/methods , Amino Acids/chemistry , Binding Sites , Electron Spin Resonance Spectroscopy , Kinetics , Photochemical Processes , Protein Conformation , Protein Processing, Post-Translational , Solvents/chemistry , Spin Labels , Sulfhydryl Compounds/chemistry , Temperature
14.
Mol Cell ; 80(1): 59-71.e4, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32818430

ABSTRACT

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The ß1-adrenergic receptor (ß1-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by ß1-ARs, leading to increased heart rate and contractility. Here, we use cryo-electron microscopy and functional studies to investigate the molecular mechanism by which ß1-AR activates Gs. We find that the tilting of α5-helix breaks a hydrogen bond between the sidechain of His373 in the C-terminal α5-helix and the backbone carbonyl of Arg38 in the N-terminal αN-helix of Gαs. Together with the disruption of another interacting network involving Gln59 in the α1-helix, Ala352 in the ß6-α5 loop, and Thr355 in the α5-helix, these conformational changes might lead to the deformation of the GDP-binding pocket. Our data provide molecular insights into the activation of G-proteins by G-protein-coupled receptors.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Isoproterenol/metabolism , Receptors, Adrenergic, beta-1/chemistry , Receptors, Adrenergic, beta-1/metabolism , Animals , Binding Sites , Cattle , Cell Line , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary
15.
J Biol Chem ; 295(44): 14793-14804, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32703899

ABSTRACT

Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.


Subject(s)
Cyanobacteria/chemistry , Mutation , Proton Pumps/chemistry , Rhodopsins, Microbial/chemistry , Binding Sites , Biopolymers/chemistry , Crystallography, X-Ray , Ion Transport , Protein Conformation , Proton Pumps/genetics , Protons , Retinaldehyde/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/metabolism
16.
J Phys Chem Lett ; 11(10): 3889-3896, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32330041

ABSTRACT

Owing to the ultrafast time scale of the photoinduced reaction and high degree of spectral overlap among the reactant, product, and excited electronic states in bacteriorhodopsin (bR), it has been a challenge for traditional spectroscopies to resolve the interplay between vibrational dynamics and electronic processes occurring in the retinal chromophore of bR. Here, we employ ultrafast two-dimensional electronic photon echo spectroscopy to follow the early excited-state dynamics of bR preceding the isomerization. We detect an early periodic photoinduced absorptive signal that, employing a hybrid multiconfigurational quantum/molecular mechanical model of bR, we attribute to periodic mixing of the first and second electronic excited states (S1 and S2, respectively). This recurrent interaction between S1 and S2, induced by a bond length alternation of the retinal chromohore, supports the hypothesis that the ultrafast photoisomerization in bR is initiated by a process involving coupled nuclear and electronic motion on three different electronic states.


Subject(s)
Bacteriorhodopsins/chemistry , Quantum Theory , Molecular Structure , Photoelectron Spectroscopy
17.
Org Lett ; 21(24): 10149-10153, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31820646

ABSTRACT

Spin-labeled amino acids (SLAAs) are often used to determine intermolecular distances and conformations in proteins via double electron-electron resonance. Currently available SLAAs can be difficult to incorporate selectively and have little resemblance to natural side chains in proteins. Enantioselective synthesis of three spin-labeled l-amino acids is described, starting from readily available 2,2,6,6-tetramethyl-4-piperidinone. These SLAAs better replicate canonical residues in proteins and aim for biological incorporation via genetic incorporation or solid-phase peptide synthesis.


Subject(s)
Amino Acids/chemistry , Amino Acids/chemical synthesis , Spin Labels , Molecular Structure , Stereoisomerism
18.
J Biol Chem ; 294(39): 14215-14230, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31399513

ABSTRACT

Imaging of rod photoreceptor outer-segment disc membranes by atomic force microscopy and cryo-electron tomography has revealed that the visual pigment rhodopsin, a prototypical class A G protein-coupled receptor (GPCR), can organize as rows of dimers. GPCR dimerization and oligomerization offer possibilities for allosteric regulation of GPCR activity, but the detailed structures and mechanism remain elusive. In this investigation, we made use of the high rhodopsin density in the native disc membranes and of a bifunctional cross-linker that preserves the native rhodopsin arrangement by covalently tethering rhodopsins via Lys residue side chains. We purified cross-linked rhodopsin dimers and reconstituted them into nanodiscs for cryo-EM analysis. We present cryo-EM structures of the cross-linked rhodopsin dimer as well as a rhodopsin dimer reconstituted into nanodiscs from purified monomers. We demonstrate the presence of a preferential 2-fold symmetrical dimerization interface mediated by transmembrane helix 1 and the cytoplasmic helix 8 of rhodopsin. We confirmed this dimer interface by double electron-electron resonance measurements of spin-labeled rhodopsin. We propose that this interface and the arrangement of two protomers is a prerequisite for the formation of the observed rows of dimers. We anticipate that the approach outlined here could be extended to other GPCRs or membrane receptors to better understand specific receptor dimerization mechanisms.


Subject(s)
Nanoparticles/chemistry , Protein Multimerization , Rhodopsin/chemistry , Animals , Cattle , Cryoelectron Microscopy , HEK293 Cells , Humans , Protein Domains , Rhodopsin/ultrastructure
19.
Sci Rep ; 9(1): 11283, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375689

ABSTRACT

Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR's hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR's oligomerization state using double electron-electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.


Subject(s)
Bacteroidetes/ultrastructure , Protein Conformation , Proton Pumps/ultrastructure , Rhodopsin/ultrastructure , Amino Acid Sequence/genetics , Bacterial Proteins/ultrastructure , Bacteroidetes/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrogen Bonding , Protein Multimerization/genetics , Proton Pumps/chemical synthesis , Proton Pumps/chemistry , Rhodopsin/chemistry , Rhodopsin/genetics , Rhodopsins, Microbial/ultrastructure , Spectrum Analysis, Raman
20.
IUCrJ ; 6(Pt 2): 305-316, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30867928

ABSTRACT

A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10°â€…s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.

SELECTION OF CITATIONS
SEARCH DETAIL
...