Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(4): 1540-1547, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36743392

ABSTRACT

Coniferous trees are the most dominant trees in Finland with a great economic value for pulp, paper, and timber making. Thus, their utilization also results in large quantities of residues, especially bark and needles. Tree needles are a rich source of bioactive compounds, which have a considerable utilization potential in different pharmaceutical or techno-chemical applications. In this study, hydrothermal extraction (HTE) of the needles from four conifer tree species, namely, Scots pine, Norway spruce, common juniper, and European larch, was performed. Besides water, ethanol was also used as a solvent to enhance extraction efficiency and selectivity. All of the HTE experiments were conducted with a customized high-pressure reactor operated at 120 °C and 5 bar. The obtained needle extracts were then analyzed using a direct-infusion ultrahigh-resolution Fourier transform ion cyclotron (FT-ICR) mass spectrometry. The FT-ICR analysis of water and ethanol extracts allowed identification of over 200 secondary plant metabolites, including monosaccharides, organic acids, terpenoids, a variety of phenolic compounds, and nitrogen alkaloids. The use of ethanol as the extraction solvent considerably enhanced the recovery of lipids, especially terpenoids, some polyphenols, and other unsaturated hydrocarbon species.

2.
Phys Rev Lett ; 127(21): 213202, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860076

ABSTRACT

Here, we report on the nonlinear ionization of argon atoms in the short wavelength regime using ultraintense x rays from the European XFEL. After sequential multiphoton ionization, high charge states are obtained. For photon energies that are insufficient to directly ionize a 1s electron, a different mechanism is required to obtain ionization to Ar^{17+}. We propose this occurs through a two-color process where the second harmonic of the FEL pulse resonantly excites the system via a 1s→2p transition followed by ionization by the fundamental FEL pulse, which is a type of x-ray resonance-enhanced multiphoton ionization (REMPI). This resonant phenomenon occurs not only for Ar^{16+}, but also through lower charge states, where multiple ionization competes with decay lifetimes, making x-ray REMPI distinctive from conventional REMPI. With the aid of state-of-the-art theoretical calculations, we explain the effects of x-ray REMPI on the relevant ion yields and spectral profile.

SELECTION OF CITATIONS
SEARCH DETAIL
...