Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Mol Cell ; 84(6): 1003-1020.e10, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38359824

ABSTRACT

The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.


Subject(s)
Centromere , Repetitive Sequences, Nucleic Acid , Humans , Centromere/genetics , Mitosis/genetics , Genomic Instability
2.
Semin Cell Dev Biol ; 156: 141-151, 2024 03 15.
Article in English | MEDLINE | ID: mdl-37872040

ABSTRACT

Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.


Subject(s)
Centromere , DNA , Humans , Centromere/genetics , Chromosome Segregation , Biological Evolution
3.
STAR Protoc ; 4(3): 102487, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37549036

ABSTRACT

Detecting DNA breaks in defined regions of the genome is critical to advancing our understanding of genome stability maintenance. Here, we present exo-FISH, a protocol to label exposed single-stranded DNA in defined repetitive regions of mammalian genomes by combining in vitro restriction enzyme digestion on fixed cells with fluorescence in situ hybridization (FISH). We describe steps for cell harvesting and fixation, slide treatments, and FISH probe hybridization. We then detail procedures for imaging and analysis. For complete details on the use and execution of this protocol, please refer to Saayman et al. (2023).1.


Subject(s)
DNA , Repetitive Sequences, Nucleic Acid , Animals , In Situ Hybridization, Fluorescence/methods , DNA/genetics , Repetitive Sequences, Nucleic Acid/genetics , DNA, Single-Stranded , DNA Breaks , Mammals/genetics
4.
Mol Cell ; 83(4): 523-538.e7, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36702125

ABSTRACT

Centromeres are essential for chromosome segregation in most animals and plants yet are among the most rapidly evolving genome elements. The mechanisms underlying this paradoxical phenomenon remain enigmatic. Here, we report that human centromeres innately harbor a striking enrichment of DNA breaks within functionally active centromere regions. Establishing a single-cell imaging strategy that enables comparative assessment of DNA breaks at repetitive regions, we show that centromeric DNA breaks are induced not only during active cellular proliferation but also de novo during quiescence. Markedly, centromere DNA breaks in quiescent cells are resolved enzymatically by the evolutionarily conserved RAD51 recombinase, which in turn safeguards the specification of functional centromeres. This study highlights the innate fragility of centromeres, which may have been co-opted over time to reinforce centromere specification while driving rapid evolution. The findings also provide insights into how fragile centromeres are likely to contribute to human disease.


Subject(s)
Centromere , DNA , Animals , Humans , Centromere/genetics , Centromere/metabolism , Centromere Protein A , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombination, Genetic
5.
Elife ; 112022 10 21.
Article in English | MEDLINE | ID: mdl-36269050

ABSTRACT

The tumour suppressor PALB2 stimulates RAD51-mediated homologous recombination (HR) repair of DNA damage, whilst its steady-state association with active genes protects these loci from replication stress. Here, we report that the lysine acetyltransferases 2A and 2B (KAT2A/2B, also called GCN5/PCAF), two well-known transcriptional regulators, acetylate a cluster of seven lysine residues (7K-patch) within the PALB2 chromatin association motif (ChAM) and, in this way, regulate context-dependent PALB2 binding to chromatin. In unperturbed cells, the 7K-patch is targeted for KAT2A/2B-mediated acetylation, which in turn enhances the direct association of PALB2 with nucleosomes. Importantly, DNA damage triggers a rapid deacetylation of ChAM and increases the overall mobility of PALB2. Distinct missense mutations of the 7K-patch render the mode of PALB2 chromatin binding, making it either unstably chromatin-bound (7Q) or randomly bound with a reduced capacity for mobilisation (7R). Significantly, both of these mutations confer a deficiency in RAD51 foci formation and increase DNA damage in S phase, leading to the reduction of overall cell survival. Thus, our study reveals that acetylation of the ChAM 7K-patch acts as a molecular switch to enable dynamic PALB2 shuttling for HR repair while protecting active genes during DNA replication.


Subject(s)
Chromatin , Tumor Suppressor Proteins , Acetylation , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair , DNA Damage , Nucleosomes
6.
FEBS J ; 289(9): 2409-2428, 2022 05.
Article in English | MEDLINE | ID: mdl-33792193

ABSTRACT

DNA double-strand breaks (DSBs) can result from both exogenous and endogenous sources and are potentially toxic lesions to the human genome. If improperly repaired, DSBs can threaten genome integrity and contribute to premature ageing, neurodegenerative disorders and carcinogenesis. Through decades of work on genome stability, it has become evident that certain regions of the genome are inherently more prone to breakage than others, known as genome instability hotspots. Recent advancements in sequencing-based technologies now enable the profiling of genome-wide distributions of DSBs, also known as breakomes, to systematically map these instability hotspots. Here, we review the application of these technologies and their implications for our current understanding of the genomic regions most likely to drive genome instability. These breakomes ultimately highlight both new and established breakage hotspots including actively transcribed regions, loop boundaries and early-replicating regions of the genome. Further, these breakomes challenge the paradigm that DNA breakage primarily occurs in hard-to-replicate regions. With these advancements, we begin to gain insights into the biological mechanisms both invoking and protecting against genome instability.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Animals , DNA/genetics , DNA Repair/genetics , Genome, Human , Genomic Instability , Humans , Mammals/genetics
7.
Nat Commun ; 12(1): 5380, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508092

ABSTRACT

The RAD51 recombinase plays critical roles in safeguarding genome integrity, which is fundamentally important for all living cells. While interphase functions of RAD51 in maintaining genome stability are well-characterised, its role in mitosis remains contentious. In this study, we show that RAD51 protects under-replicated DNA in mitotic human cells and, in this way, promotes mitotic DNA synthesis (MiDAS) and successful chromosome segregation. In cells experiencing mild replication stress, MiDAS was detected irrespective of mitotically generated DNA damage. MiDAS broadly required de novo RAD51 recruitment to single-stranded DNA, which was supported by the phosphorylation of RAD51 by the key mitotic regulator Polo-like kinase 1. Importantly, acute inhibition of MiDAS delayed anaphase onset and induced centromere fragility, suggesting a mechanism that prevents the satisfaction of the spindle assembly checkpoint while chromosomal replication remains incomplete. This study hence identifies an unexpected function of RAD51 in promoting genomic stability in mitosis.


Subject(s)
Anaphase/genetics , Chromatin/metabolism , DNA Repair , M Phase Cell Cycle Checkpoints/genetics , Rad51 Recombinase/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Chromosome Segregation , DNA/biosynthesis , DNA Damage , DNA Replication , Genomic Instability , Humans , Intravital Microscopy , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Polo-Like Kinase 1
8.
Cell Signal ; 87: 110106, 2021 11.
Article in English | MEDLINE | ID: mdl-34363951

ABSTRACT

Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Cell Line, Tumor , DNA Damage , DNA Repair , Homologous Recombination , Humans , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
9.
Semin Cell Dev Biol ; 113: 1-2, 2021 05.
Article in English | MEDLINE | ID: mdl-33741251
10.
Semin Cell Dev Biol ; 113: 38-46, 2021 05.
Article in English | MEDLINE | ID: mdl-32938550

ABSTRACT

As the primary catalyst of homologous recombination (HR) in vertebrates, RAD51 has been extensively studied in the context of repair of double-stranded DNA breaks (DSBs). With recent advances in the understanding of RAD51 function extending beyond DSBs, the importance of RAD51 throughout DNA metabolism has become increasingly clear. Here we review the suggested roles of RAD51 beyond HR, specifically focusing on their interplay with DNA replication and the maintenance of genomic stability, in which RAD51 function emerges as a double-edged sword.


Subject(s)
Genomic Instability/genetics , Rad51 Recombinase/metabolism , DNA Breaks, Double-Stranded , Humans
11.
EMBO J ; 39(7): e103002, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31943278

ABSTRACT

The timely activation of homologous recombination is essential for the maintenance of genome stability, in which the RAD51 recombinase plays a central role. Biochemically, human RAD51 polymerises faster on single-stranded DNA (ssDNA) compared to double-stranded DNA (dsDNA), raising a key conceptual question: how does it discriminate between them? In this study, we tackled this problem by systematically assessing RAD51 binding kinetics on ssDNA and dsDNA differing in length and flexibility using surface plasmon resonance. By directly fitting a mechanistic model to our experimental data, we demonstrate that the RAD51 polymerisation rate positively correlates with the flexibility of DNA. Once the RAD51-DNA complex is formed, however, RAD51 remains stably bound independent of DNA flexibility, but rapidly dissociates from flexible DNA when RAD51 self-association is perturbed. This model presents a new general framework suggesting that the flexibility of DNA, which may increase locally as a result of DNA damage, plays an important role in rapidly recruiting repair factors that multimerise at sites of DNA damage.


Subject(s)
DNA/chemistry , DNA/metabolism , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , DNA Repair , Humans , Models, Theoretical , Point Mutation , Protein Binding , Rad51 Recombinase/genetics , Scattering, Small Angle , Surface Plasmon Resonance , X-Ray Diffraction
12.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673974

ABSTRACT

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Subject(s)
Chromatin/ultrastructure , DNA Damage , Fanconi Anemia Complementation Group N Protein/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors/metabolism , BRCA2 Protein/genetics , Cell Line, Tumor , Chromosomes/ultrastructure , DNA Repair , DNA Replication , Genome, Human , HEK293 Cells , HeLa Cells , Humans , Inhibitory Concentration 50 , Mutation , Protein Binding , Proteomics , Transcription, Genetic , Tumor Suppressor Proteins/metabolism
13.
Wellcome Open Res ; 2: 110, 2017.
Article in English | MEDLINE | ID: mdl-29387807

ABSTRACT

Background: Germline mutations in the PALB2 gene are associated with the genetic disorder Fanconi anaemia and increased predisposition to cancer. Disease-associated variants are mainly protein-truncating mutations, whereas a few missense substitutions are reported to perturb its interaction with breast cancer susceptibility proteins BRCA1 and BRCA2, which play essential roles in homology-directed repair (HDR). More recently, PALB2 was shown to associate with active genes independently of BRCA1, and through this mechanism, safeguards these regions from DNA replicative stresses. However, it is unknown whether PALB2 tumour suppressor function requires its chromatin association. Methods: Mining the public database of cancer mutations, we identified four potentially deleterious cancer-associated missense mutations within the PALB2 chromatin association motif (ChAM). To assess the impact of these mutations on PALB2 function, we generated cell lines expressing PALB2 variants harbouring corresponding ChAM mutations, and evaluated PALB2 chromatin association properties and the cellular resistance to camptothecin (CPT). Additionally, we examined the accumulation of γH2A.X and the RAD51 recombinase as readouts of DNA damage signalling and HDR, respectively. Results: We demonstrate that a small-cell lung cancer (SCLC)-associated T413S mutation in PALB2 impairs its chromatin association and confers reduced resistance to CPT, the only FDA-approved drug for relapsed SCLC. Unexpectedly, we found a less efficient γH2A.X nuclear foci formation in PALB2 T413S expressing cells, whereas a near-normal level of RAD51 nuclear foci was visible. Conclusions: These findings support the importance of PALB2 chromatin association in the suppression of tumours, including SCLC, an unusually aggressive type of cancer with poor prognosis. PALB2 T413S has little impact on RAD51 recruitment, likely due to its intact interaction with BRCA1 and BRCA2. However, this mutant shows inefficient DNA stress signalling. This finding sheds new light on the function of PALB2, playing a role in efficient DNA stress signalling through constitutive chromatin association.

14.
Nat Commun ; 7: 13227, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796307

ABSTRACT

Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification.


Subject(s)
Acetylation , Centrosome/metabolism , Histone Acetyltransferases/metabolism , Protein Serine-Threonine Kinases/metabolism , p300-CBP Transcription Factors/metabolism , Amino Acid Motifs , Animals , Cell Cycle/physiology , Centrioles/metabolism , Centrosome/ultrastructure , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Histones/chemistry , Humans , Lysine/chemistry , Mice , Models, Molecular , Molecular Dynamics Simulation , Phosphorylation , Plasmids/metabolism , Point Mutation , Protein Domains , Protein Processing, Post-Translational , RNA, Small Interfering/metabolism , Spindle Apparatus/metabolism
15.
J Cell Biol ; 212(3): 281-8, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26811421

ABSTRACT

Topoisomerase IIß-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment.


Subject(s)
Carrier Proteins/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Homologous Recombination , Nuclear Proteins/metabolism , Ovarian Neoplasms/drug therapy , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , Female , HEK293 Cells , HeLa Cells , Humans , Nuclear Proteins/genetics , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Interference , Rad51 Recombinase/genetics , Signal Transduction/drug effects , Time Factors , Transfection , Polo-Like Kinase 1
16.
Oncotarget ; 6(14): 11751-67, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26059434

ABSTRACT

We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was significantly more pronounced in an Ink4a/Arf(-/-) EGFRvIII glioblastoma model relative to an Ink4a/Arf(-/-) PDGF-ß model. The tumoricidal and TMZ-sensitizing effects of BI2536 were uniformly observed across Ink4a/Arf(-/-) EGFRvIII glioblastoma clones that acquired independent resistance mechanisms to EGFR inhibitors, suggesting these resistant clones retain oncogenic stress that required PLK1 compensation. Although BI2536 significantly augmented the anti-neoplastic effect of EGFR inhibitors in the Ink4a/Arf(-/-) EGFRvIII model, durable response was not achieved until TMZ was added. Our results suggest that optimal therapeutic effect against glioblastomas requires a "multi-orthogonal" combination tailored to the molecular physiology associated with the target cancer genome.


Subject(s)
Brain Neoplasms/genetics , Cell Cycle Proteins/antagonists & inhibitors , DNA Damage/drug effects , ErbB Receptors/biosynthesis , Glioblastoma/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents, Alkylating/pharmacology , Blotting, Western , Cell Line, Tumor , Comet Assay , DNA Damage/genetics , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , ErbB Receptors/genetics , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockout Techniques , Heterografts , Humans , Mice , RNA, Small Interfering , Temozolomide , Polo-Like Kinase 1
18.
Int J Cancer ; 136(12): 2961-6, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25388513

ABSTRACT

Inhibition of type 1 IGF receptor (IGF-1R) sensitizes to DNA-damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non-homologous end-joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF-1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF-1R-inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time-dependent accumulation of γH2AX foci in IGF-1R -inhibited or -depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild-type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2(-/-) colorectal cancer cells, compared with isogenic BRCA2(+/-) cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO-3306, which impairs HR by inhibiting CDK1-mediated BRCA1 phosphorylation. R0-3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF-1R inhibition, with 2.4-fold reduction in AZ12253801 GI50 and 13-fold reduction in GI80. These data suggest that responses to IGF-1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild-type, BRCA mutant) that may be intrinsically sensitive to IGF-1R inhibitory drugs.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Homologous Recombination/genetics , Receptor, IGF Type 1/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Blotting, Western , Boron Compounds/pharmacology , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Histones/metabolism , Homologous Recombination/drug effects , Humans , Isoxazoles/pharmacology , Male , Microscopy, Fluorescence , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation/drug effects , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Pyrimidines/pharmacology , Quinolines/pharmacology , RNA Interference , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Receptor, IGF Type 1/antagonists & inhibitors , Thiazoles/pharmacology
19.
Nat Cell Biol ; 16(10): 962-71, 1-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25218637

ABSTRACT

Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting RAD51 nucleofilament formation at stalled replication forks. CDK2 phosphorylates BRCA2 (pS3291-BRCA2) to limit stabilizing contacts with polymerized RAD51; however, how replication stress modulates CDK2 activity and whether loss of pS3291-BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase LATS1 interacts with CDK2 in response to genotoxic stress to constrain pS3291-BRCA2 and support RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that LATS1 forms part of an ATR-mediated response to replication stress that requires the tumour suppressor RASSF1A. Importantly, perturbation of the ATR-RASSF1A-LATS1 signalling axis leads to genomic defects associated with loss of BRCA2 function and contributes to genomic instability and 'BRCA-ness' in lung cancers.


Subject(s)
BRCA2 Protein/metabolism , Cyclin-Dependent Kinase 2/metabolism , DNA Replication , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , BRCA2 Protein/genetics , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Chromosome Aberrations , Comet Assay , DNA Breaks, Double-Stranded , DNA Repair , Humans , Mice, Knockout , Microscopy, Confocal , Models, Genetic , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA Interference , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tumor Suppressor Proteins/genetics
20.
Cell Rep ; 7(5): 1547-1559, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24835992

ABSTRACT

Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.


Subject(s)
BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 2/metabolism , Genomic Instability , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , BRCA2 Protein/genetics , DNA Replication , Exonucleases/metabolism , HEK293 Cells , HeLa Cells , Humans , Protein Binding , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...