Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 71(5): 620-632, 2021 05.
Article in English | MEDLINE | ID: mdl-33406015

ABSTRACT

Anaerobic mono- and co-digestion of fruits and vegetable waste (FVW), slaughterhouse waste (SHW), and cattle manure (CM) under mesophilic conditions (35°C) were conducted through biochemical methane potential tests to investigate how the FVW in a co-substrate formulation improves the methane yield, the degradative synergy between substrates, and especially the stability of the process. The co-digestion of FVW:SHW and FVW:CM were evaluated with volatile solids (VS) ratios of 1:2, 1:1, and 2:1. The results indicated that the highest synergistic effect was found in the co-digestion FVW:CM at 1:1 VS ratio. However, the co-digestion FWV:SHW at 1:2 VS ratio increased the methane yield by 74.2% compared to the mono-digestion of FVW (776.3 mL CH4 g VSadded-1). As a critical condition in these processes, the stability was evaluated using the early warning indicator VFA/TA (volatile fatty acids/total alkalinity). The co-substrate SHW promotes greater stability in methane production as the soluble carbohydrate content in FVW increases. It was proposed that the high protein (49.04 ± 0.96% VS) and ammonia content (693 ± 3 mg L-1) of SHW leads to the formation of a dampening system known as a carbonate-acetic buffer. It was concluded that balanced distribution between carbohydrates, proteins, and lipids is crucial to increase methane yields, and the low methane productions were associated with low N-NH4+ concentrations (FVW:CM co-digestions). The results obtained in this study can serve as a basis to design full-scale digesters under similar operating conditions and with the same substrate:co-substrate relationships.Implications: The production of methane from the anaerobic digestion process of food, and lose waste presents a viable alternative of valorization and could help to mitigate environmental impacts. However, anaerobic digestion from these substrates carries high instabilities and low methane yields. The need to increase these yields and contribute to process stability must be considered in the selection of a co-substrate. In this context, this work aims to evaluate the best fruits and vegetable waste: co-substrateformulation, that promotes higher methane yield, a synergy between substrates, and to improve the AD process stability in the presence of perturbations in the substrate composition. We believe that our results could be helpful for the design processes for methane production from fruit and vegetable waste, to contribute to competitiveness with conventional energies and promote the sustainability of these processes.


Subject(s)
Fruit , Vegetables , Anaerobiosis , Animals , Bioreactors , Cattle , Digestion
2.
Environ Sci Pollut Res Int ; 27(23): 28649-28669, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32347480

ABSTRACT

The purpose of this work was to produce iron nanoparticles (Fe-NP) by microbial pathway from anaerobic bacteria grown in anaerobic fluidized bed reactors (AnFBRs) that constitute a new stage of a waste-based biorefinery. Bioparticles from biological fluidized bed reactors from a biorefinery of organic fraction of municipal solid wastes (that produces hydrolysates rich in reducing sugars) were nanodecorated (embedded nanobioparticle or nanodecorated bioparticle, ENBP) by biological reduction of iron salts. Factors "origin of bioparticles" (either from hydrogenogenic or methanogenic fluidized bed reactor) and "type of iron precursor salt" (iron chloride or iron citrate) were explored. SEM and high-resolution transmission electron microscopy (HRTEM) showed amorphous distribution of nanoparticles (NP) on the bioparticles surface, although small structures that are nanoparticle-like could be seen in the SEM micrographs. Some agglomeration of NPs was confirmed by DLS. Average NP size was lower in general for NP in ENBP-M than ENBP-H according to HRTEM. The factors did not have a significant influence on the specific surface area of NPs, which was high and in the range 490 to 650 m2 g-1. Analysis by EDS displayed consistent iron concentration 60-65% iron in nanoparticles present in ENBP-M (bioparticles previously grown in methanogenic bioreactor), whereas the iron concentration in NPs present in ENBP-H (bioparticles previously grown in hydrogenogenic bioreactor) was more variable in a range from 8.5 to 62%, depending on the iron salt. X-ray diffraction patterns showed the typical peaks for magnetite at 35° (3 1 1), 43° (4 0 0), and 62° (4 0 0); moreover, siderite diffraction pattern was found at 26° (0 1 2), 38° (1 1 0), and 42° (1 1 3). Results of infrared analysis of ENBP in our work were congruent with presence of magnetite and occasionally siderite determined by XRD analysis as well as presence of both Fe+2 and F+3 (and selected satellite signal peaks) observed by XPS. Our results on the ENBPs hold promise for water treatment, since iron NPs are commonly used in wastewater technologies that treat a wide variety of pollutants. Finally, the biological production of ENBP coupled to a biorefinery could become an environmentally friendly platform for nanomaterial biosynthesis as well as an additional source of revenues for a waste-based biorefinery.


Subject(s)
Iron , Nanoparticles , Bacteria, Anaerobic , Bioreactors , Wastewater
3.
Environ Sci Pollut Res Int ; 27(23): 28585-28596, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32266619

ABSTRACT

A new biorefinery conceptual process is proposed for biohydrogen and biomethane production from a combination of fruits and vegetable wastes (FVW) and corn stover (CS). The objective of this work was to perform the acid hydrolysis (HCl 0.5% v/v, 120 °C, 2 h) of the FVW and CS at 3:1 dry basis ratio, and to process its main physical phases, liquid hydrolyzates (LH) and hydrolyzed solids (HS), by mesophilic dark fermentation (DF) and anaerobic digestion (AD), respectively. In DF of LH as carbon source, hydrogen was produced at maximum rate of 2.6 mL H2/(gglucose h) and maximum accumulation of 223.8 mL H2/gglucose, equivalent to 2 mol H2/molglucose, in a butyric-pathway-driven fermentation. HS were digested to methane production assessing inoculum to substrate ratios in the range 2-4 ginoculum/gVS. The main results in AD were 14 mmol CH4/gvs. The biorefinery demonstrated the feasibility to integrate the acid hydrolysis as pretreatment and subsequently use the LH for hydrogen production, and the HS for methane production, with an energy yield recovery of 9.7 kJ/gvs, being the energy contribution from anaerobic digestion 8-fold higher than of dark fermentation.


Subject(s)
Vegetables , Zea mays , Anaerobiosis , Biofuels , Bioreactors , Fermentation , Fruit/chemistry , Hydrolysis , Methane/analysis
4.
Environ Sci Pollut Res Int ; 24(33): 25602-25617, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27259953

ABSTRACT

A life cycle assessment (LCA) of a four-stage biorefinery concept, coined H-M-Z-S, that converts 1 t of organic fraction of municipal solid waste (OFMSW) into bioenergy and bioproducts was performed in order to determine whether it could be an alternative to common disposal of OFMSW in landfills in the Mexican reality. The OFMSW is first fermented for hydrogen production, then the fermentates are distributed 40 % to the methane production, 40 % to enzyme production, and 20 % to the saccharification stage. From hydrogen and methane, up to 267 MJ and 204 kWh of gross heat and electricity were produced. The biorefinery proved to be self-sustainable in terms of power (95 kWh net power), but it presented a deficit of energy for heating services (-155 MJ), which was partially alleviated by digesting the wastes from the bioproducts stages (-84 MJ). Compared to landfill, biorefinery showed lower environmental impacts in global warming (down to -128 kg CO2-eq), ozone layer depletion (2.96 × 10-6 kg CFC11-eq), and photochemical oxidation potentials (0.011 kg C2H4-eq). The landfarming of the digestates increased significantly the eutrophication impacts, up to 20 % below the eutrophication from landfilling (1.425 kg PO4-eq). These results suggest that H-M-Z-S biorefinery could be an attractive alternative compared to conventional landfilling for the management of municipal solid wastes, although new alternatives and uses of co-products and wastes should be explored and tested. Moreover, the biorefinery system would benefit from the integration into the market chain of the bioproducts, i.e., enzymes and hydrolysates among others.


Subject(s)
Biofuels/analysis , Bioreactors , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Fermentation , Hydrogen/analysis , Methane/analysis , Mexico
5.
Waste Manag Res ; 32(5): 353-65, 2014 May.
Article in English | MEDLINE | ID: mdl-24742981

ABSTRACT

Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.


Subject(s)
Bioelectric Energy Sources , Biofuels/analysis , Solid Waste/analysis , Waste Management , Fermentation , Hydrogen/analysis , Methane/analysis
6.
Waste Manag Res ; 31(8): 849-58, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23877254

ABSTRACT

We evaluated the production of holocellulases from the cellulolytic microorganisms Cellulomonas flavigena PR-22 and Trichoderma reesei MCG 80 using as substrates the organic fraction of municipal solid waste (OFMSW) and digestates from a hydrogenogenic-methanogenic bioenergy production process. The first set of experiments (E1) used the mutant actinobacteria C. flavigena PR-22 whereas another set (E2) used the mutant filamentous fungi T. reesei MCG 80. In E1 with OFMSW as substrate, xylanolytic activities ranged from 1800 to 3900 international units g(holocellulose)(-1) (IU g(hol)(-1)), whereas the cellulolytic activities ranged from 220 to 420 IU g(hol)(-1). The variation of agitation speed did not have a significant effect on enzyme activity, whereas the increase of substrate concentration had a significant negative effect on both xylanolytic and cellulolytic activities on a holocellulose feed basis. Regarding E2, the OFMSW was evaluated at 1, 2 and 3 % volatile solids (VS). At 2 % VS the best filter paper activities were 1200 filter paper units (FPU) l(-1); however, in a holocellulase basis the best result was 67 FPU g(hol)(-1), corresponding to 1 % VS. Next, OFMSW was compared with OFMSW supplemented with lactose, digested solids from hydrogenogenic fermentation (D1) and digested solids from a two-stage process (D2). Against expectations, no positive effect was found in OFMSW due to lactose. The best enzymatic titres were in the order D1 > OFMSW ≈ OFMSW + lactose > D2. The use of digestates from hydrogenogenic fermentation for enzyme production holds promise for waste management. It promotes energy and added-value bioproduct generation-a green alternative to common practice of management and disposal of organic wastes.


Subject(s)
Cellulase/metabolism , Cellulomonas/enzymology , Trichoderma/enzymology , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL