Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
mSystems ; 9(8): e0062724, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39012154

ABSTRACT

Clostridia are abundant in the human gut and comprise families associated with host health such as Oscillospiraceae, which has been correlated with leanness. However, culturing bacteria within this family is challenging, leading to their detection primarily through 16S rRNA amplicon sequencing, which has a limited ability to unravel diversity at low taxonomic levels, or by shotgun metagenomics, which is hindered by its high costs and complexity. In this cross-sectional study involving 114 Colombian adults, we used an amplicon-based sequencing strategy with alternative markers-gyrase subunit B (gyrB) and DNA K chaperone heat protein 70 (dnaK)-that evolve faster than the 16S rRNA gene. Comparing the diversity and abundance observed with the three markers in our cohort, we found a reduction in the diversity of Clostridia, particularly within Lachnospiraceae and Oscillospiraceae among obese individuals [as measured by the body mass index (BMI)]. Within Lachnospiraceae, the diversity of Ruminococcus_A negatively correlated with BMI. Within Oscillospiraceae, the genera CAG-170 and Vescimonas also exhibited this negative correlation. In addition, the abundance of Vescimonas was negatively correlated with BMI. Leveraging shotgun metagenomic data, we conducted a phylogenetic and genomic characterization of 120 metagenome-assembled genomes from Vescimonas obtained from a larger sample of the same cohort. We identified 17 of the 72 reported species. The functional annotation of these genomes showed the presence of multiple carbohydrate-active enzymes, particularly glycosyl transferases and glycoside hydrolases, suggesting potential beneficial roles in fiber degradation, carbohydrate metabolism, and butyrate production. IMPORTANCE: The gut microbiota is diverse across various taxonomic levels. At the intra-species level, it comprises multiple strains, some of which may be host-specific. However, our understanding of fine-grained diversity has been hindered by the use of the conserved 16S rRNA gene. While shotgun metagenomics offers higher resolution, it remains costly, may fail to identify specific microbes in complex samples, and requires extensive computational resources and expertise. To address this, we employed a simple and cost-effective analysis of alternative genetic markers to explore diversity within Clostridia, a crucial group within the human gut microbiota whose diversity may be underestimated. We found high intra-species diversity for certain groups and associations with obesity. Notably, we identified Vescimonas, an understudied group. Making use of metagenomic data, we inferred functionality, uncovering potential beneficial roles in dietary fiber and carbohydrate degradation, as well as in short-chain fatty acid production.


Subject(s)
Gastrointestinal Microbiome , Obesity , Humans , Gastrointestinal Microbiome/genetics , Obesity/microbiology , Male , Adult , Female , Cross-Sectional Studies , Middle Aged , RNA, Ribosomal, 16S/genetics , Metagenomics/methods , Body Mass Index
2.
Nutr Metab Cardiovasc Dis ; 33(1): 112-123, 2023 01.
Article in English | MEDLINE | ID: mdl-36462977

ABSTRACT

BACKGROUND AND AIMS: Cardiometabolic diseases refer to a group of interrelated conditions, sharing metabolic dysfunctions like insulin resistance, obesity, dyslipidemia, and hypertension. The gut microbiota has been associated with CMD and related conditions. Alterations in the intestinal epithelium permeability triggered by chronic stress and diet could bridge gut microbiota with inflammation and CMD development. Here, we assessed the relationship between intestinal permeability and circulating SCFAs with cardiometabolic health status (CMHS) and gut microbiota in a sample of 116 Colombian adults. METHODS AND RESULTS: Plasma levels of lipopolysaccharide-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP), claudin-3, and purported zonulin peptides (PZP) were measured by ELISA, whereas plasmatic levels of acetate, propionate, butyrate, isobutyrate, and valerate were measured by gas chromatography/mass spectrometry. In addition, for further statistical analysis, we took data previously published by us on this cohort, including gut microbiota and multiple CMD risk factors that served to categorize subjects as cardiometabolically healthy or cardiometabolically abnormal. From univariate and multivariate statistical analyses, we found the levels of I-FABP, LBP, and PZP increased in the plasma of cardiometabolically abnormal individuals, although only PZP reached statistical significance. CONCLUSIONS: Our results did not confirm the applicability of I-FABP, LBP, claudin-3, or SCFAs as biomarkers for associating intestinal permeability with the cardiometabolic health status in these subjects. On the other hand, the poorly characterized peptides detected with the ELISA kit branded as "zonulin" were inversely associated with cardiometabolic dysfunctions and gut microbiota. Further studies to confirm the true identity of these peptides are warranted.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Adult , Humans , Claudin-3 , Intestines , Permeability
3.
Crit Rev Microbiol ; 49(6): 764-785, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36369718

ABSTRACT

The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.


Subject(s)
Gastrointestinal Microbiome , Humans , Homeostasis , Immune System , Regeneration
4.
Food Res Int ; 162(Pt A): 111949, 2022 12.
Article in English | MEDLINE | ID: mdl-36461284

ABSTRACT

Golden berry (Physalis peruviana) is a tropical fruit rich in antioxidants that has been proposed to be able to control the lipid profile in hypercholesterolemic patients. Dyslipidemia is an independent risk factor for cardiometabolic diseases. The gut microbiota is strongly associated with cardiometabolic risk and is involved in redox balance, intestinal permeability, and inflammation. However, the impacts of golden berry on some of these factors, including the human gut microbiota, have never been tested, and there are no tools for compliance monitoring or dietary intake assessment regarding nutritional interventions with this fruit. In the pre-post quasi-experimental nutritional intervention presented here, 18 adult men (27-49 years old) consumed golden berries (Dorada variety) for three weeks. We evaluated putative biomarkers of exposure through an untargeted metabolomics approach (liquid chromatography-mass spectrometry LC-MS), quantified the biomarkers of oxidative stress, gut permeability, and inflammation in plasma, and assessed the effects of fruit intake on the gut microbiota through 16S rRNA gene sequencing of feces (Illumina MiSeq V2). First, syringic acid and kaempferol were identified as putative biomarkers of golden berry consumption. Intervention with this fruit promoted physiological changes in the participants after three weeks, reducing the level of the oxidative stress marker 8-isoprostane (-148 pg/ml; 36.1 %; p = 0.057) and slightly altering gut permeability by increasing the plasma levels of LBP (2.91 µg/ml; 54.6 %; p = 0.0005) and I-FABP (0.15, 14.7 %, p = 0.04) without inducing significant inflammation; i.e., the levels of IL-1ß, TNF-α and IL-8 changed by 0.7 (2.0 %), -4.0 (-9.6 %) and -0.4 (-1.8 %) pg/ml, respectively. Notably, the consumption of golden berries did not affect the gut microbiota of the individuals consistently but instead shifted it in a personalized manner. The compositions of the gut microbiota of a given individual at the end of intervention and one month after the end of intervention were statistically more similar to their own baseline than to a corresponding sample from a different individual. This intervention identified putative biomarkers of golden berry intake along with potential benefits of its consumption relevant to cardiometabolic disease risk reduction. Golden berries are likely to positively modulate redox balance, although this effect must be proven in a future controlled clinical trial.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Physalis , Adult , Male , Humans , Middle Aged , Fruit , RNA, Ribosomal, 16S , Permeability , Inflammation , Biomarkers , Oxidative Stress
5.
Free Radic Biol Med ; 190: 42-54, 2022 09.
Article in English | MEDLINE | ID: mdl-35933054

ABSTRACT

Cardiometabolic disease risk factors, including obesity, insulin resistance, high blood pressure, and dyslipidemia, are associated with elevated oxidative stress biomarkers like oxylipins. Increased adiposity by itself induces various isomers of this oxidized lipid family, while dietary polyphenols show benefits in its regulation. Previously, we showed that specific co-abundant microorganisms characterized the gut microbiota of Colombians and associated differentially with diet, lifestyle, obesity, and cardiometabolic health status, which led us to hypothesize that urinary oxylipins would reflect the intensity of oxidative metabolism linked to gut microbiota dysbiosis. Thus, we selected a convenience sample of 105 participants (age: 40.2 ± 11.9 years, 47.6% women), grouped according to microbiota, cardiometabolic health status, and body mass index (BMI); and evaluated 33 urinary oxylipins by HPLC-QqQ-MS/MS (e.g., isoprostanes, prostaglandins, and metabolites), paired with anthropometry and blood chemistry information and dietary antioxidants estimated from a 24-h food recall. In general, oxylipins did not show differences among individuals who differed in gut microbiota. While the unmetabolized oxylipin levels were not associated with BMI, the total content of oxylipin metabolites was highest in obese and cardiometabolically abnormal subjects (e.g., insulin resistant), mainly by prostaglandin-D (2,3-dinor-11ß-PGF2α) and 15-F2t-IsoPs (2,3-dinor-15-F2t-IsoP and 2,3-dinor-15-epi-15-F2t-IsoP) metabolites. The total polyphenol intake in this cohort was 1070 ± 627 mg/day. After adjusting for body weight, the polyphenol intake was significantly higher in lean than overweight and showed an inverse association with dinor-oxylipin levels in principal component analysis. These results suggest that the 2,3-dinor-oxylipins could be more specific biomarkers associated with BMI than their parent oxylipins and that are sensitive to be regulated by dietary antioxidants.


Subject(s)
Antioxidants , Cardiovascular Diseases , Adult , Biomarkers , F2-Isoprostanes/metabolism , Female , Humans , Male , Middle Aged , Obesity/metabolism , Overweight , Oxylipins , Polyphenols , Tandem Mass Spectrometry
6.
mSphere ; : e0050621, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133198

ABSTRACT

The bacterial microbiota of the mosquito influences numerous physiological processes of the host. As low-microbial-biomass ecosystems, mosquito tissues are prone to contamination from the laboratory environment and from reagents commonly used to isolate DNA from tissue samples. In this report, we analyzed nine 16S rRNA data sets, including new data obtained by us, to gain insight into the impact of potential contaminating sequences on the composition, diversity, and structure of the mosquito tissue microbial community. Using a clustering-free approach based on the relative abundance of amplicon sequence variants (ASVs) in tissue samples and negative controls, we identified candidate contaminating sequences that sometimes differed from, but were consistent with, results found using established methodologies. Some putative contaminating sequences belong to bacterial taxa previously identified as contaminants that are commonly found in metagenomic studies but that have also been identified as part of the mosquito core microbiota, with putative physiological relevance for the host. Using different relative abundance cutoffs, we show that contaminating sequences have a significant impact on tissue microbiota diversity and structure analysis. IMPORTANCE The study of tissue-associated microbiota from mosquitoes (primarily from the gut) has grown significantly in the last several years. Mosquito tissue samples represent a challenge for researchers given their low microbial biomass and similar taxonomic composition commonly found in the laboratory environment and in molecular reagents. Using new and published data sets that identified mosquito tissue microbiota from gut and reproductive tract tissues (and their respective negative controls), we developed a simple method to identify contamination microbiota. This approach uses an initial taxonomic identification without operational taxonomic unit (OTU) clustering and evaluates the relative abundance of control sample sequences, allowing the identification and removal of purported contaminating sequences in data sets obtained from low-microbial-biomass samples. While it was exemplified with the analysis of tissue microbiota from mosquitos, it can be extended to other data sets dealing with similar technical artifacts.

7.
Nutrients ; 12(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992776

ABSTRACT

Diet plays an important role in shaping gut microbiota. However, much remains to be learned regarding this association. We analyzed dietary intake and gut microbiota in a community-dwelling cohort of 441 Colombians. Diet quality, intake of food groups and nutrient consumption were paired with microbial diversity and composition using linear regressions, Procrustes analyses and a random-forest machine-learning algorithm. Analyses were adjusted for potential confounders, including the five cities from where the participants originated, sex (male, female), age group (18-40 and 41-62 years), BMI (lean, overweight, obese) and socioeconomic status. Microbial diversity was higher in individuals with increased intake of nutrients obtained from plant-food sources, whereas the intake of food groups and nutrients correlated with microbiota structure. Random-forest regressions identified microbial communities associated with different diet components. Two remarkable results confirmed previous expectations regarding the link between diet and microbiota: communities composed of short-chain fatty acid (SCFA) producers were more prevalent in the microbiota of individuals consuming diets rich in fiber and plant-food sources, such as fruits, vegetables and beans. In contrast, an inflammatory microbiota composed of bile-tolerant and putrefactive microorganisms along with opportunistic pathogens thrived in individuals consuming diets enriched in animal-food sources and of low quality, i.e., enriched in ultraprocessed foods and depleted in dietary fiber. This study expands our understanding of the relationship between dietary intake and gut microbiota. We provide evidence that diet is strongly associated with the gut microbial community and highlight generalizable connections between them.


Subject(s)
Diet , Food Quality , Gastrointestinal Microbiome , Nutrients , Adolescent , Adult , Animals , Dietary Fiber , Fatty Acids, Volatile , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Middle Aged , Obesity , Overweight , RNA, Ribosomal, 16S/analysis , Vegetables , Young Adult
8.
Gut Microbes ; 11(3): 556-568, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31154934

ABSTRACT

Identifying the genetic and non-genetic determinants of obesity and related cardiometabolic dysfunctions is cornerstone for their prevention, treatment, and control. While genetic variants contribute to the cardiometabolic syndrome (CMS), non-genetic factors, such as the gut microbiota, also play key roles. Gut microbiota is intimately associated with CMS and its composition is heritable. However, associations between this microbial community and host genetics are understudied. We contribute filling this gap by genotyping 60 variants in 39 genes of three modules involved in CMS risk, measuring cardiometabolic risk factors, and characterizing gut microbiota in a cohort of 441 Colombians. We hypothesized that CMS risk variants were correlated with detrimental levels of clinical parameters and with the abundance of disease-associated microbes. We found several polymorphisms in genes of innate immunity, appetite control, and energy metabolism that were associated with metabolic dysregulation and microbiota composition; the associations between host genetics and cardiometabolic health were independent of the participants' gut microbiota, and those between polymorphisms and gut microbes were independent of the CMS risk. Associations were also independent of the host genetic ancestry, diet and lifestyle. Most microbes explaining genetic-microbiota associations belonged to the families Lachnospiraceae and Ruminococcaceae. Multiple CMS risk alleles were correlated with increased abundance of beneficial microbiota, suggesting that the phenotypic outcome of the evaluated variants might depend upon the genetic background of the studied population and its environmental context. Our results provide additional evidence that the gut microbiota is under the host genetic control and present pathways of host-microbe interactions.


Subject(s)
Appetite Regulation/genetics , Energy Metabolism/genetics , Gastrointestinal Microbiome , Immunity, Innate/genetics , Metabolic Syndrome/genetics , Metabolic Syndrome/microbiology , Adult , Body Mass Index , Cohort Studies , Cross-Sectional Studies , Female , Gene-Environment Interaction , Genotype , Host Microbial Interactions , Humans , Male , Middle Aged , Obesity/etiology , Polymorphism, Genetic , RNA, Ribosomal, 16S/genetics , Risk Factors
9.
Gut Microbes ; 11(2): 191-204, 2020.
Article in English | MEDLINE | ID: mdl-31311405

ABSTRACT

Cardiometabolic affections greatly contribute to the global burden of disease. The susceptibility to obesity, cardiovascular disease, and type-2 diabetes, conditions that add to the cardiometabolic syndrome (CMS), was associated with the ancestral genetic composition and gut microbiota. Studies explicitly testing associations between genetic ancestry and gut microbes are growing. We here examined whether the host genetic ancestry was associated with gut microbiota composition, and distinguished the effects of genetic ancestry and non-genetic factors on human cardiometabolic health. We performed a cross-sectional study with 441 community-dwelling Colombian mestizos from five cities spanning the Andes, Pacific, and Caribbean coasts. We characterized the host genetic ancestry by genotyping 40 ancestry informative markers; characterized gut microbiota through 16S rRNA gene sequencing; assessed diet intake, physical activity, cigarette, and medicament consumption; and measured cardiometabolic outcomes that allowed calculating a CMS risk scale. On average, each individual of our cohort was 67 ± 6% European, 21 ± 5% Native American and 12 ± 5% African. Multivariable-adjusted generalized linear models showed that individuals with higher Native American and African ancestries had increased fasting insulin, body mass index and CMS risk, as assessed by the CMS risk scale. Furthermore, we identified 21 OTUs associated to the host genetic ancestry and 20 to cardiometabolic health. While we highlight novel associations between genetic ancestry and gut microbiota, we found that the effect of intestinal microbes was more likely to explain the variance in CMS risk scale than the contributions of European, Native American and African genetic backgrounds.


Subject(s)
Cardiovascular Diseases/genetics , Gastrointestinal Microbiome , Genetic Predisposition to Disease/genetics , Risk Factors , Adult , Black or African American/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/microbiology , Cohort Studies , Cross-Sectional Studies , Diet , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Indians, South American/genetics , Life Style , Male , Metagenomics , Middle Aged , RNA, Ribosomal, 16S , White People/genetics , Young Adult
10.
Nutrients ; 11(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818779

ABSTRACT

Chlorogenic acids (CGA) are the most abundant phenolic compounds in green coffee beans and in the human diet and have been suggested to mitigate several cardiometabolic risk factors. Here, we aimed to evaluate the effect of a water-based standardized green coffee extract (GCE) on cardiometabolic parameters in ApoE-/- mice and to explore the potential underlying mechanisms. Mice were fed an atherogenic diet without (vehicle) or with GCE by gavage (equivalent to 220 mg/kg of CGA) for 14 weeks. We assessed several metabolic, pathological, and inflammatory parameters and inferred gut microbiota composition, diversity, and functional potential. Although GCE did not reduce atherosclerotic lesion progression or plasma lipid levels, it induced important favorable changes. Specifically, improved metabolic parameters, including fasting glucose, insulin resistance, serum leptin, urinary catecholamines, and liver triglycerides, were observed. These changes were accompanied by reduced weight gain, decreased adiposity, lower inflammatory infiltrate in adipose tissue, and protection against liver damage. Interestingly, GCE also modulated hepatic IL-6 and total serum IgM and induced shifts in gut microbiota. Altogether, our results reveal the cooccurrence of these beneficial cardiometabolic effects in response to GCE in the same experimental model and suggest potential mediators and pathways involved.


Subject(s)
Apolipoproteins E/metabolism , Coffea/chemistry , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Plant Extracts/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/microbiology , Animals , Apolipoproteins E/genetics , Atherosclerosis , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Insulin Resistance , Liver/drug effects , Liver/microbiology , Liver Cirrhosis/prevention & control , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/prevention & control , Plant Extracts/chemistry
11.
Nutrients ; 11(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591685

ABSTRACT

Fiber fermentation by gut microbiota yields short-chain fatty acids (SCFAs) that are either absorbed by the gut or excreted in feces. Studies are conflicting as to whether SCFAs are beneficial or detrimental to cardiometabolic health, and how gut microbiota associated with SCFAs is unclear. In this study of 441 community-dwelling adults, we examined associations of fecal SCFAs, gut microbiota diversity and composition, gut permeability, and cardiometabolic outcomes, including obesity and hypertension. We assessed fecal microbiota by 16S rRNA gene sequencing, and SCFA concentrations by gas chromatography/mass spectrometry. Fecal SCFA concentrations were inversely associated with microbiota diversity, and 70 unique microbial taxa were differentially associated with at least one SCFA (acetate, butyrate or propionate). Higher SCFA concentrations were associated with a measure of gut permeability, markers of metabolic dysregulation, obesity and hypertension. Microbial diversity showed association with these outcomes in the opposite direction. Associations were significant after adjusting for measured confounders. In conclusion, higher SCFA excretion was associated with evidence of gut dysbiosis, gut permeability, excess adiposity, and cardiometabolic risk factors. Studies assessing both fecal and circulating SCFAs are needed to test the hypothesis that the association of higher fecal SCFAs with obesity and cardiometabolic dysregulation is due to less efficient SCFA absorption.


Subject(s)
Fatty Acids, Volatile/chemistry , Feces/chemistry , Feces/microbiology , Gastrointestinal Microbiome , Hypertension , Obesity , Adolescent , Adult , Cardiovascular Diseases , Fatty Acids, Volatile/metabolism , Female , Humans , Male , Metabolic Diseases , Middle Aged , Young Adult
12.
Sci Rep ; 8(1): 11356, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30054529

ABSTRACT

Westernization and its accompanying epidemiological transitions are associated with changes in gut microbiota. While the extremes of this lifestyle spectrum have been compared (hunter-gatherers, industrialized countries), populations undergoing such shifts have received little attention. To fill the gap of knowledge about the microbiome evolution following broad lifestyle changes and the emergence of disease-associated dysbiosis, we performed a cross-sectional study in which we characterized the microbiota of 441 Colombian adults through 16S rRNA gene sequencing and determined its relationship with demographic, health-related and dietary parameters. We showed that in the gut microbiota of this cohort thrive taxa proper of both hunter-gatherers (Prevotella, Treponema) and citizens of industrialized countries (Bacteroides, Bifidobacterium, Barnesiella); the relative abundances of these taxa differed from those in Western and non-Western populations. We also showed that the Colombian gut microbiota is composed of five consortia of co-abundant microorganisms that are differentially associated with lifestyle, obesity and cardiometabolic disease, and highlighted metabolic pathways that might explain associations between microbiota and host health. Our results give insights into the evolution of the gut microbiota, and underscore the importance of this community to human health. Promoting the growth of specific microbial consortia could help ameliorating physiological conditions associated with Western lifestyles.


Subject(s)
Cardiovascular Diseases/microbiology , Gastrointestinal Microbiome , Metabolic Diseases/microbiology , Obesity/microbiology , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Colombia , Female , Genome, Bacterial , Humans , Male , Middle Aged , Young Adult
13.
Appl Microbiol Biotechnol ; 102(1): 403-411, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29079861

ABSTRACT

Culture-independent methods have granted the possibility to study microbial diversity in great detail, but technical issues pose a threat to the accuracy of new findings. Biases introduced during DNA extraction can result in erroneous representations of the microbial community, particularly in samples with low microbial biomass. We evaluated the DNA extraction method, initial sample biomass, and reagent contamination on the assessment of the human gut microbiota. Fecal samples of 200 mg were subjected to 1:10 serial dilutions; total DNA was obtained using two commercial kits and the microbiota assessed by 16S ribosomal RNA (rRNA) gene sequencing. In addition, we sequenced multiple technical controls. The two kits were efficient in extracting DNA from samples with as low as 2 mg of feces. However, in instances of lower biomass, only one kit performed well. The number of reads from negative controls was negligible. Both DNA extraction kits allowed inferring microbial consortia with similar membership but different abundances. Furthermore, we found differences in the taxonomic profile of the microbial community. Unexpectedly, the effect of sample dilution was moderate and did not introduce severe bias into the microbial inference. Indeed, the microbiota inferred from fecal samples was distinguishable from that of negative controls. In most cases, samples as low as 2 mg did not result in a dissimilar representation of the microbial community compared with the undiluted sample. Our results indicate that the gut microbiota inference is not much affected by contamination with laboratory reagents but largely impacted by the protocol to extract DNA.


Subject(s)
DNA Contamination , DNA/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , DNA/genetics , DNA, Bacterial/genetics , Humans , Indicators and Reagents , Metagenomics/methods , Microbial Consortia/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/chemistry , Sequence Analysis, DNA
14.
Diabetes Care ; 40(1): 54-62, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27999002

ABSTRACT

OBJECTIVE: Recent studies suggest the beneficial effects of metformin on glucose metabolism may be microbially mediated. We examined the association of type 2 diabetes, metformin, and gut microbiota in community-dwelling Colombian adults. On the basis of previous research, we hypothesized that metformin is associated with higher levels of short-chain fatty acid (SCFA)-producing and mucin-degrading microbiota. RESEARCH DESIGN AND METHODS: Participants were selected from a larger cohort of 459 participants. The present analyses focus on the 28 participants diagnosed with diabetes-14 taking metformin- and the 84 participants without diabetes who were matched (3-to-1) to participants with diabetes by sex, age, and BMI. We measured demographic information, anthropometry, and blood biochemical parameters and collected fecal samples from which we performed 16S rRNA gene sequencing to analyze the composition and structure of the gut microbiota. RESULTS: We found an association between diabetes and gut microbiota that was modified by metformin use. Compared with participants without diabetes, participants with diabetes taking metformin had higher relative abundance of Akkermansia muciniphila, a microbiota known for mucin degradation, and several gut microbiota known for production of SCFAs, including Butyrivibrio, Bifidobacterium bifidum, Megasphaera, and an operational taxonomic unit of Prevotella. In contrast, compared with participants without diabetes, participants with diabetes not taking metformin had higher relative abundance of Clostridiaceae 02d06 and a distinct operational taxonomic unit of Prevotella and a lower abundance of Enterococcus casseliflavus. CONCLUSIONS: Our results support the hypothesis that metformin shifts gut microbiota composition through the enrichment of mucin-degrading A. muciniphila as well as several SCFA-producing microbiota. Future studies are needed to determine if these shifts mediate metformin's glycemic and anti-inflammatory properties.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Verrucomicrobia/drug effects , Adolescent , Adult , Case-Control Studies , Colombia , Diabetes Mellitus, Type 2/microbiology , Fatty Acids, Volatile , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Middle Aged , Mucins/drug effects , RNA, Ribosomal, 16S/analysis
15.
Front Nutr ; 3: 26, 2016.
Article in English | MEDLINE | ID: mdl-27551678

ABSTRACT

Next-generation sequencing technologies have found a widespread use in the study of host-microbe interactions due to the increase in their throughput and their ever-decreasing costs. The analysis of human-associated microbial communities using a marker gene, particularly the 16S rRNA, has been greatly benefited from these technologies - the human gut microbiome research being a remarkable example of such analysis that has greatly expanded our understanding of microbe-mediated human health and disease, metabolism, and food absorption. 16S studies go through a series of in vitro and in silico steps that can greatly influence their outcomes. However, the lack of a standardized workflow has led to uncertainties regarding the transparency and reproducibility of gut microbiome studies. We, here, discuss the most common challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, its use as template in PCR with primers that amplify specific hypervariable regions of the gene, amplicon sequencing, the denoising and removal of low-quality reads, the detection and removal of chimeric sequences, the clustering of high-quality sequences into operational taxonomic units, and their taxonomic classification. We recommend the essential technical information that should be conveyed in publications for reproducibility of results and encourage non-experts to include procedures and available tools that mitigate most of the problems encountered in microbiome analysis.

16.
BMC Microbiol ; 14: 311, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25495462

ABSTRACT

BACKGROUND: The composition of the gut microbiota has recently been associated with health and disease, particularly with obesity. Some studies suggested a higher proportion of Firmicutes and a lower proportion of Bacteroidetes in obese compared to lean people; others found discordant patterns. Most studies, however, focused on Americans or Europeans, giving a limited picture of the gut microbiome. To determine the generality of previous observations and expand our knowledge of the human gut microbiota, it is important to replicate studies in overlooked populations. Thus, we describe here, for the first time, the gut microbiota of Colombian adults via the pyrosequencing of the 16S ribosomal DNA (rDNA), comparing it with results obtained in Americans, Europeans, Japanese and South Koreans, and testing the generality of previous observations concerning changes in Firmicutes and Bacteroidetes with increasing body mass index (BMI). RESULTS: We found that the composition of the gut microbiota of Colombians was significantly different from that of Americans, Europeans and Asians. The geographic origin of the population explained more variance in the composition of this bacterial community than BMI or gender. Concerning changes in Firmicutes and Bacteroidetes with obesity, in Colombians we found a tendency in Firmicutes to diminish with increasing BMI, whereas no change was observed in Bacteroidetes. A similar result was found in Americans. A more detailed inspection of the Colombian dataset revealed that five fiber-degrading bacteria, including Akkermansia, Dialister, Oscillospira, Ruminococcaceae and Clostridiales, became less abundant in obese subjects. CONCLUSION: We contributed data from unstudied Colombians that showed that the geographic origin of the studied population had a greater impact on the composition of the gut microbiota than BMI or gender. Any strategy aiming to modulate or control obesity via manipulation of this bacterial community should consider this effect.


Subject(s)
Bacteria/classification , Gastrointestinal Tract/microbiology , Microbiota , Adult , Aged , Bacteria/genetics , Cluster Analysis , Colombia , Cross-Sectional Studies , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Young Adult
17.
Iatreia ; Iatreia;15(4): 253-262, dic. 2002.
Article in Spanish | LILACS | ID: lil-422934

ABSTRACT

En el presente texto se cuestionan el objeto y el método de la biología clásica, aquélla que elimina el objeto de estudio para convertirlo en objeto de intervención (aspecto que es retomado por otros como "recurso natural"). Así mismo, se replantean el determinismo genético y el Dogma Central de la biología molecular, dado que el material genético o ADN por sí mismo es un cristal poco reactivo y que sólo adquiere sentido en relaciones con otras moléculas que lo determinan, creando una red codependiente. Se propone que los seres vivos son emergencias de redes de relaciones y reconocimientos en contextos específicos, por fuera de los cuales nada puede existir.


Subject(s)
Science , Biology , DNA , Genetics , Emergencies
SELECTION OF CITATIONS
SEARCH DETAIL