Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 133(2): 108-119, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37317833

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and a frequent cause of heart failure and sudden cardiac death. Our understanding of the genetic bases and pathogenic mechanisms underlying HCM has improved significantly in the recent past, but the combined effect of various pathogenic gene variants and the influence of genetic modifiers in disease manifestation are very poorly understood. Here, we set out to investigate genotype-phenotype relationships in 2 siblings with an extensive family history of HCM, both carrying a pathogenic truncating variant in the MYBPC3 gene (p.Lys600Asnfs*2), but who exhibited highly divergent clinical manifestations. METHODS: We used a combination of induced pluripotent stem cell (iPSC)-based disease modeling and CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing to generate patient-specific cardiomyocytes (iPSC-CMs) and isogenic controls lacking the pathogenic MYBPC3 variant. RESULTS: Mutant iPSC-CMs developed impaired mitochondrial bioenergetics, which was dependent on the presence of the mutation. Moreover, we could detect altered excitation-contraction coupling in iPSC-CMs from the severely affected individual. The pathogenic MYBPC3 variant was found to be necessary, but not sufficient, to induce iPSC-CM hyperexcitability, suggesting the presence of additional genetic modifiers. Whole-exome sequencing of the mutant carriers identified a variant of unknown significance in the MYH7 gene (p.Ile1927Phe) uniquely present in the individual with severe HCM. We finally assessed the pathogenicity of this variant of unknown significance by functionally evaluating iPSC-CMs after editing the variant. CONCLUSIONS: Our results indicate that the p.Ile1927Phe variant of unknown significance in MYH7 can be considered as a modifier of HCM expressivity when found in combination with truncating variants in MYBPC3. Overall, our studies show that iPSC-based modeling of clinically discordant subjects provides a unique platform to functionally assess the effect of genetic modifiers.


Subject(s)
Cardiomyopathy, Hypertrophic , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Mutation , Myocytes, Cardiac/metabolism , Gene Editing
2.
Circulation ; 147(1): 47-65, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36325906

ABSTRACT

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Subject(s)
Bicuspid Aortic Valve Disease , Cardiomyopathies , Heart Defects, Congenital , Induced Pluripotent Stem Cells , Humans , Animals , Mice , Heart Defects, Congenital/complications , Cardiomyopathies/etiology , Myocytes, Cardiac , Aortic Valve/diagnostic imaging , Transcription Factors , Chromosomal Proteins, Non-Histone
3.
Cell Oncol (Dordr) ; 44(6): 1273-1286, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34604945

ABSTRACT

PURPOSE: Cancer stem cells represent a cancer cell subpopulation that has been found to be associated with metastasis and chemoresistance. Therefore, it is vital to identify mechanisms regulating cancer stemness. Previously, we have shown that the atypical cyclin P (CCNP), also known as CNTD2, is upregulated in lung and colorectal cancers and is associated with a worse clinical prognosis. Given that other cyclins have been implicated in pluripotency regulation, we hypothesized that CCNP may also play a role in cancer stemness. METHODS: Cell line-derived spheroids, ex vivo intestinal organoid cultures and induced-pluripotent stem cells (iPSCs) were used to investigate the role of CCNP in stemness. The effects of CCNP on cancer cell stemness and the expression of pluripotency markers and ATP-binding cassette (ABC) transporters were evaluated using Western blotting and RT-qPCR assays. Cell viability was assessed using a MTT assay. The effects of CCNP on WNT targets were monitored by RNA-seq analysis. Data from publicly available web-based resources were also analyzed. RESULTS: We found that CCNP increases spheroid formation in breast, lung and colorectal cancers, and upregulates the expression of stemness (CD44, CD133) and pluripotency (SOX2, OCT4, NANOG) markers. In addition, we found that CCNP promotes resistance to anticancer drugs and induces the expression of multidrug resistance ABC transporters. Our RNA-seq data indicate that CCNP activates the WNT pathway, and that inhibition of this pathway abrogates the increase in spheroid formation promoted by CCNP. Finally, we found that CCNP knockout decreases OCT4 expression in iPSCs, further supporting the notion that CCNP is involved in stemness regulation. CONCLUSION: Our results reveal CCNP as a novel player in stemness and as a potential therapeutic target in cancer.


Subject(s)
Cyclins/metabolism , Neoplastic Stem Cells/metabolism , Wnt Signaling Pathway , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cyclins/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Neoplastic Stem Cells/pathology , Pluripotent Stem Cells/metabolism , Wnt Signaling Pathway/genetics
4.
Rev Endocr Metab Disord ; 22(4): 1189-1200, 2021 12.
Article in English | MEDLINE | ID: mdl-34241766

ABSTRACT

The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.


Subject(s)
Induced Pluripotent Stem Cells , Metabolism, Inborn Errors , Humans , Induced Pluripotent Stem Cells/metabolism , Metabolism, Inborn Errors/metabolism
5.
J Clin Med ; 9(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007916

ABSTRACT

AIMS: Hypertrophic cardiomyopathy (HCM) is often accompanied by increased trabeculated myocardium (TM)-which clinical relevance is unknown. We aim to measure the left ventricular (LV) mass and proportion of trabeculation in an HCM population and to analyze its clinical implication. METHODS AND RESULTS: We evaluated 211 patients with HCM (mean age 47.8 ± 16.3 years, 73.0% males) with cardiac magnetic resonance (CMR) studies. LV trabecular and compacted mass were measured using dedicated software for automatic delineation of borders. Mean compacted myocardium (CM) was 160.0 ± 62.0 g and trabecular myocardium (TM) 55.5 ± 18.7 g. The percentage of trabeculated myocardium (TM%) was 26.7% ± 6.4%. Females had significantly increased TM% compared to males (29.7 ± 7.2 vs. 25.6 ± 5.8, p < 0.0001). Patients with LVEF < 50% had significantly higher values of TM% (30.2% ± 6.0% vs. 26.6% ± 6.4%, p = 0.02). Multivariable analysis showed that female gender and neutral pattern of hypertrophy were directly associated with TM%, while dynamic obstruction, maximal wall thickness and LVEF% were inversely associated with TM%. There was no association between TM% with arterial hypertension, physical activity, or symptoms. Atrial fibrillation and severity of hypertrophy were the only variables associated with cardiovascular death. Multivariable analysis failed to demonstrate any correlation between TM% and arrhythmias. CONCLUSIONS: Approximately 25% of myocardium appears non-compacted and can automatically be measured in HCM series. Proportion of non-compacted myocardium is increased in female, non-obstructives, and in those with lower contractility. The amount of trabeculation might help to identify HCM patients prone to systolic heart failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...