Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
3 Biotech ; 14(1): 10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38084302

ABSTRACT

Alfalfa (Medicago sativa L.) is a vital source of forage protein for ruminants, yet its ensiling poses challenges due to high buffering capacity and low water-soluble carbohydrates (WSC). This study investigated the impact of sodium diacetate (SDA) on alfalfa silage quality and aerobic stability. SDA was applied at four different rates to wilted alfalfa on a fresh basis: 0 g/kg, 3 g/kg, 5 g/kg, and 7 g/kg, and silages were ensiled in laboratory-scale silos for 45 days, followed by 7 days of aerobic exposure. A 16S rRNA gene sequencing assay using GenomeLab™ GeXP was performed to determine the relationship between dominant isolated lactic acid bacteria species and fermentation characteristics and aerobic stability on silage. The results showed that Lentilolactobacillus brevis, Pediococcus pentosaceus and Enterococcus faecium were the most prevalent bacteria when silos were opened, whereas Weissella paramesenteroides, Bacillus cereus, B. megaterium and Bacillus spp. were most prevalent bacteria after 7 days of aerobic exposure. Dry matter, pH, and WSC content were not affected by SDA, but doses above 5 g/kg induced a homofermentative process, which increased lactic acid concentration and lactic acid to acetic acid ratio, decreased yeast count during aerobic exposure, and improved aerobic stability. These findings offer useful information for optimizing SDA usage in silage, assuring improved quality and longer storage, and thereby improving animal husbandry and sustainable feed practices.

2.
Toxicol Res ; 39(4): 749-759, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779581

ABSTRACT

In this study, we investigated the effects of grape seed proanthocyanidin extract (GSPE) against the side effects of high-dose administration of methylprednisolone (MP) in male rats. A total of 32 adult Wistar male albino rats were divided into four groups: (1) control (CON), received standard food only; (2) MP, received standard food + intraperitoneal injection of 60 mg/kg MP on day 7; (3) GSPE, received standard food + 200 mg/kg/day GSPE; and (4) MP + GSPE, received standard food + 200 mg/kg/day of GSPE + intraperitoneal injection of 60 mg/kg MP on day 7. All animals in the GSPE and GSPE + MP groups were treated once a day by oral gavage for 14 consecutive days. The feed intake of rats in the MP and MP + GSPE groups decreased significantly by 24.14% and 13.52%, respectively (p < 0.05). Administration of MP resulted in significant increases in serum concentrations of blood urea nitrogen (p < 0.001), glucose (p < 0.01), alkaline phosphatase, and adrenocorticotropic hormone (p < 0.05). High-dose MP administration significantly reduced catalase (p < 0.001) and glutathione peroxidase (p < 0.05) concentrations in the liver and kidney tissues of rats, while glutathione concentrations were only reduced in liver tissue (p < 0.05). The expression levels of Bcl-2 and TNF-α in liver, kidney, and testicular tissue were significantly increased, while the expression levels of caspase-3 were reduced (p < 0.001). Furthermore, sperm concentration was significantly affected by GSPE in rats induced by high-dose MP, and sperm loss was significantly reduced in MP + GSPE (p < 0.05). These findings suggest that GSPE could be useful as a supplement to alleviate MP-induced toxicity in rats.

3.
Biosystems ; 234: 105062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844828

ABSTRACT

Achieving sustainable livestock management necessitates optimizing animal production while minimizing environmental impact. To achieve this, feed efficiency must be enhanced, and nutrition blueprints must be understood. In ruminant nutrition, this is of paramount importance, as it exposes degradation kinetics and nutritional benchmarks, allowing feed management and formulations to be more ecologically balanced. Previous research efforts have focused on exploring the relationship between a restricted set of nutrient parameters and the in vitro gas production dynamics. In the current study, an extensive dataset derived from freeze-dried kefir culture treated white clover silage was used to examine intricate relationships between eight nonlinear models and diverse variables. This dataset contains in vitro gas production data along with nutritional composition, microbial populations, fermentation quality, digestibility, mineral concentration, and fatty acid profiles. Through rigorous application of mathematical models, the performance in capturing gas production dynamics was critically assessed. Among these, the Michaelis‒Menten (MM) and Mitscherlich (MIT) models fit the data well and offer superior predictions of gas production dynamics. Asymptotic gas volume was negatively correlated with crude protein content, emphasizing the influence of protein on gas production. Fiber composition plays a significant role in fermentation kinetics, as evidenced by significant correlations between degradation rate constant and crude protein concentrations. The degradation rate constant of insoluble fraction exhibited significant positive correlations with crude protein and neutral detergent fiber contents. Moreover, mineral content had significant effects on gas production dynamics. Zinc content showed a strong and significant positive correlation with the gas production rate coefficient, underscoring its crucial role in enhancing microbial activity. Conversely, calcium content displayed a significant but weak negative correlation with the final asymptotic gas volume, indicating its potential to modulate gas production. In summury, this study provides detailed insights into the intricate relationship between mathematical models and various variables in rumen fermentation. The MM and MIT models have proven to be robust tools, offering nuanced perspectives on gas production dynamics. These findings pave the path for improving sustainable ruminant nutritional practices and refining feed management strategies.


Subject(s)
Nonlinear Dynamics , Silage , Animals , Silage/analysis , Digestion , Ruminants , Proteins , Minerals , Fermentation
4.
Animals (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37444023

ABSTRACT

A major objective of this study is to identify factors influencing the quality of high-moisture total mixed rations (TMRs) for livestock feed and explore possible manipulations that can enhance their fermentation characteristics and stability in order to address the problem of poor aerobic stability. Therefore, the current study utilized infrared thermography (IRT) to assess the aerobic stability of water-added TMRs in the feed bunker. By manipulating the moisture content of freshly prepared TMRs at four different levels through water addition and subjecting it to storage at two consistent temperatures, significant correlations between IRT values (center temperature (CT) and maximum temperature difference (MTD)) and key parameters such as lactic acid bacteria, water-soluble carbohydrates, and TMR pH were established. The first and second principal components together accounted for 44.3% of the variation, with the first component's load influenced by IRT parameters, fermentation characteristics, and air exposure times, while the second component's load was influenced by dry matter content and lactic acid concentration. The results of these studies indicate the possibility that feeding methods can be optimized by identifying portions with higher CT or MTD data using IRT measurements just before feeding dairy cows in the field. As a result, increasing the use of IRT in feed management and preservation processes is projected to have a positive impact on animal productivity in the future.

5.
Vet Sci ; 10(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37104425

ABSTRACT

This investigation was conducted to determine how the growth and carcass traits of meat-type sheep breeds raised in Turkey are associated with IGF1 5'UTR polymorphisms. Overall, 202 lambs from five breeds were evaluated. We identified eight nucleotide changes (seven substitutions and one deletion) in three variants of IGF1 5'UTR by SSCP analysis and nucleotide sequencing. It was found that the P1 variants had a unique deletion (g.171328230 delT), while the P2 variants were identified by SNPs rs401028781, rs422604851, and g.171328404C > Y. The P3 variants possessed one heterozygous substitution (g.171328260G > R) and three homozygous substitutions (g.171328246T > A, g.171328257T > G, g.171328265T > C) not observed in P1 or P2. Based on the growth and production traits, a statistically significant difference was found only in chest width at weaning (p < 0.01) and leg circumferences at yearling (p < 0.05). The P1 variants showed a leaner profile with a higher Musculus longissimus dorsi, but the differences were not significant (p > 0.05). The P2 variants had a higher percentage of rack (p < 0.01) and loin (p > 0.05). Moreover, there was no discernible difference between variants, even though the P3 variants had a higher percentage of neck and leg and the P1 variants had a higher percentage of the shoulder. It is concluded that nucleotide changes in IGF1 5'UTR could be exploited utilizing a marker-assisted selection technique to increase growth and production attributes, as well as carcass quality traits.

6.
Trop Anim Health Prod ; 55(1): 53, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36708502

ABSTRACT

Japanese quails reared under high stocking density (SD) were evaluated for the effects of grape seed powder (GSP) and meal (GSM) supplementation on performance, blood biochemistry, thigh and breast muscle fatty acids, antioxidant status, and HSP70 gene expression. We randomly assigned 288 (15-day-old) quail chicks to six treatment groups in a factorial design (2 × 3) with four replicates, involving two density levels [160 cm2/bird (LD) and 80 cm2/bird (HD)] and three feed forms (FFs) [no supplementation, grape seed powder (3% GSP), grape seed meal (3% GSM)]. SD had a significant effect on live weight, but not on weekly feed intake, daily weight gain, and feed conversion ratio. Serum creatinine and aspartate aminotransferase levels were significantly affected by FF and SD × FF (p < 0.05). A high SD reduced the n-3/n-6 ratio of breast muscle and a significant interaction was found between FF (p < 0.001). The SD × FF interaction reduced the Σn-6 ratio in HDM's thigh muscle, whereas in LDM, the ratio increased (p < 0.01). At high SD, neither GSP nor GSM reduced biological markers of oxidative stress (p > 0.05). Compared to GSP, GSM had higher efficacy at reducing HSP70 levels related to high SD levels. Despite this, at high SD, a diet containing 3% of GSP and GSM was not effective in overcoming oxidative stress. Therefore, more studies using different doses of GSM and GSP in quail diets would be beneficial.


Subject(s)
Antioxidants , Vitis , Animals , Antioxidants/metabolism , Coturnix/metabolism , Powders , Diet/veterinary , Quail , Gene Expression , Animal Feed/analysis , Dietary Supplements
7.
Res Vet Sci ; 150: 58-64, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35803008

ABSTRACT

This study set out to examine the effects of fermented distillers grains with solubles (DDGS) partially replaced with soybean meal on growth performance, some blood parameters, meat quality, intestinal microflora, and immune response in broilers. A total of 504 chicks were randomly allocated into 6 groups with 3 replicates. All chicks were fed with one of the following formulated diets i) basal diet based on the maize-soybean meal (C), ii) partially replaced with non-fermented DDGS (NC), iii) partially replaced fermented DDGS with B. subtilis (BS), iv) partially replaced with BS + multienzyme (BSE), v) partially replaced fermented DDGS with S. cerevisiae (SC), vi) partially replaced with SC + multienzyme (SCE). Results showed no significant difference between groups for body weight, daily weight gain (DWG), and feed intake (FI) (P > 0.05). However, feed conversion ratios (FCR) of BS, BSE, and SCE groups were significantly lower than the C and NC groups (P < 0.001). Albumin, total protein, alanine aminotransferase (P < 0.01), Total antioxidant status, aspartate aminotransferase, high-density lipoprotein, low-density lipoprotein, and uric acid (P < 0.05) were significantly affected by treatments. The meat color of the SC and SCE groups was darker after 24 h compared to the C group (P < 0.01). The highest LAB counts of ileal and cecum were observed in the BSE and SCE groups (P < 0.001). These results suggest that partial replacement of soybean meal with fermented DDGS had a positive effect on FCR without affecting DWG and FI, and combining fermented DDGS with multienzymes decreased FCR and improved immune and gut health status.


Subject(s)
Gastrointestinal Microbiome , Glycine max , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens/physiology , Diet/veterinary , Immunity , Meat , Saccharomyces cerevisiae
8.
Animals (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34359222

ABSTRACT

The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g-1) on wilted alfalfa and stored at an ambient temperature of 25-30 °C are studied. After 45 days of ensiling, fermentation characteristics and aerobic stability of silages were measured, and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using the GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggests that the addition of kefir improves the aerobic stability of silages, even the initial water-soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mold formation. Enterococcus faecium, Pediococcus pentosaceous and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening, while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, the application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.

SELECTION OF CITATIONS
SEARCH DETAIL