Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Mech Behav Biomed Mater ; 126: 105074, 2022 02.
Article in English | MEDLINE | ID: mdl-35030471

ABSTRACT

After myocardial infarction (MI), adult mammals exhibit scar formation, adverse left ventricular (LV) remodeling, LV stiffening, and impaired contractility, ultimately resulting in heart failure. Neonatal mammals, however, are capable of natural heart regeneration after MI. We hypothesized that neonatal cardiac regeneration conserves native biaxial LV mechanics after MI. Wistar rat neonates (1 day old, n = 46) and adults (8-10 weeks old, n = 20) underwent sham surgery or permanent left anterior descending coronary artery ligation. At 6 weeks after neonatal MI, Masson's trichrome staining revealed negligible fibrosis. Echocardiography for the neonatal MI (n = 15) and sham rats (n = 14) revealed no differences in LV wall thickness or chamber diameter, and both groups had normal ejection fraction (72.7% vs 77.5%, respectively, p = 0.1946). Biaxial tensile testing revealed similar stress-strain curves along both the circumferential and longitudinal axes across a full range of physiologic stresses and strains. The circumferential modulus (267.9 kPa vs 274.2 kPa, p = 0.7847), longitudinal modulus (269.3 kPa vs 277.1 kPa, p = 0.7435), and maximum shear stress (3.30 kPa vs 3.95 kPa, p = 0.5418) did not differ significantly between the neonatal MI and sham groups, respectively. In contrast, transmural scars were observed at 4 weeks after adult MI. Adult MI hearts (n = 7) exhibited profound LV wall thinning (p < 0.0001), chamber dilation (p = 0.0246), and LV dysfunction (ejection fraction 45.4% vs 79.7%, p < 0.0001) compared to adult sham hearts (n = 7). Adult MI hearts were significantly stiffer than adult sham hearts in both the circumferential (321.5 kPa vs 180.0 kPa, p = 0.0111) and longitudinal axes (315.4 kPa vs 172.3 kPa, p = 0.0173), and also exhibited greater maximum shear stress (14.87 kPa vs 3.23 kPa, p = 0.0162). Our study is the first to show that native biaxial LV mechanics are conserved after neonatal heart regeneration following MI, thus adding biomechanical support for the therapeutic potential of cardiac regeneration in the treatment of ischemic heart disease.


Subject(s)
Myocardial Infarction , Animals , Animals, Newborn , Biomechanical Phenomena , Cicatrix/pathology , Disease Models, Animal , Myocardial Infarction/pathology , Myocardium/pathology , Rats , Rats, Wistar , Ventricular Remodeling
2.
Andrologia ; 52(11): e13762, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32816332

ABSTRACT

Capsaicin is the main capsaicinoid in chilli peppers that have numerous biological and pharmaceutical roles in the body such as antioxidant, anti-inflammatory, anticarcinogenic, analgesic, counterirritant and antiarthritic properties. Numerous studies have shown increased oxidative stress in men with varicocele that is caused by dilation of the spermatic vein and increase of testicular temperature. Therefore, we aimed to assess the effect of Capsaicin on sperm parameters in rats with experimental varicocele. At first, we induced varicocele in 30 Wistar rats and, verify varicocele model only in 10 rats by assessment of sperm parameters, oxidative stress, DNA damage and persistent histone after 2 months. Of the remaining 20 varicocelised rats, half of them were treated with 2.5 mg/kg Capsaicin for two months and the other half served as control. Then, sperm tests were assessed, and the results showed that Capsaicin can restore the mean of sperm oxidative stress (38.78 ± 3.75 versus 58.37 ± 4.34; p < .05), sperm concentration (60.14 ± 7.66 versus 34.87 ± 5.78; p < .05) and motility (62.43 ± 3.10 versus 41.22 ± 5.11; p < .05) in varicocelised rats treated with Capsaicin compared to varicocelised rats that were not treat. Therefore, Capsaicin possibly with reduction of oxidative stress level could improve mean of sperm concentration and motility in varicocele condition.


Subject(s)
Varicocele , Animals , Capsaicin/pharmacology , Humans , Male , Rats , Rats, Wistar , Sperm Count , Sperm Motility , Spermatozoa
3.
Oxid Med Cell Longev ; 2020: 5909306, 2020.
Article in English | MEDLINE | ID: mdl-32802266

ABSTRACT

Using a surgically induced varicocele rat model, we show here strong evidence that the misfolded/unfolded protein response that is part of the stress response of the endoplasmic reticulum (ER) is activated in the varicocele testis (VCL), leading to the induction of apoptosis. To support this hypothesis, it is observed that the spliced variant of the X-box protein 1 (XBP1s), resulting from the activation of the inositol-requiring enzyme 1 (IRE1) membrane sensor, is significantly more represented in VCL testicular extracts. The activation of the IRE1/XBP1s pathway is also supported by the observation that the VCL testes show an increase phosphorylation of the c-Jun-kinase (JNK) known to be one intermediate of this pathway and an increased level of caspase-3, the terminal apoptotic effector, partly explaining the apoptotic status of the VCL testis.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Testis/metabolism , Unfolded Protein Response/genetics , Varicocele/metabolism , Animals , Disease Models, Animal , Humans , Male , Rats
4.
Microb Biotechnol ; 13(6): 1780-1792, 2020 11.
Article in English | MEDLINE | ID: mdl-32476224

ABSTRACT

The cyanobacterium Synechococcus elongatus (SE) has been shown to rescue ischaemic heart muscle after myocardial infarction by photosynthetic oxygen production. Here, we investigated SE toxicity and hypothesized that systemic SE exposure does not elicit a significant immune response in rats. Wistar rats intravenously received SE (n = 12), sterile saline (n = 12) or E. coli lipopolysaccharide (LPS, n = 4), and a subset (8 SE, 8 saline) received a repeat injection 4 weeks later. At baseline, 4 h, 24 h, 48 h, 8 days and 4 weeks after injection, clinical assessments, blood cultures, blood counts, lymphocyte phenotypes, liver function tests, proinflammatory cytokines and immunoglobulins were assessed. Across all metrics, SE rats responded comparably to saline controls, displaying no clinically significant immune response. As expected, LPS rats exhibited severe immunological responses. Systemic SE administration does not induce sepsis or toxicity in rats, thereby supporting the safety of cyanobacteria-mammalian symbiotic therapeutics using this organism.


Subject(s)
Escherichia coli , Synechococcus , Animals , Photosynthesis , Rats , Rats, Wistar
5.
Sci Rep ; 10(1): 7319, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355240

ABSTRACT

Neonatal mice exhibit natural heart regeneration after myocardial infarction (MI) on postnatal day 1 (P1), but this ability is lost by postnatal day 7 (P7). Cardiac biomechanics intricately affect long-term heart function, but whether regenerated cardiac muscle is biomechanically similar to native myocardium remains unknown. We hypothesized that neonatal heart regeneration preserves native left ventricular (LV) biomechanical properties after MI. C57BL/6J mice underwent sham surgery or left anterior descending coronary artery ligation at age P1 or P7. Echocardiography performed 4 weeks post-MI showed that P1 MI and sham mice (n = 22, each) had similar LV wall thickness, diameter, and ejection fraction (59.6% vs 60.7%, p = 0.6514). Compared to P7 shams (n = 20), P7 MI mice (n = 20) had significant LV wall thinning, chamber enlargement, and depressed ejection fraction (32.6% vs 61.8%, p < 0.0001). Afterward, the LV was explanted and pressurized ex vivo, and the multiaxial lenticular stress-strain relationship was tracked. While LV tissue modulus for P1 MI and sham mice were similar (341.9 kPa vs 363.4 kPa, p = 0.6140), the modulus for P7 MI mice was significantly greater than that for P7 shams (691.6 kPa vs 429.2 kPa, p = 0.0194). We conclude that, in neonatal mice, regenerated LV muscle has similar biomechanical properties as native LV myocardium.


Subject(s)
Heart Ventricles/physiopathology , Heart/physiology , Myocardial Infarction/pathology , Myocardium/pathology , Regeneration , Animals , Animals, Newborn , Biomechanical Phenomena , Cell Proliferation , Collagen/chemistry , Echocardiography , Female , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Stress, Mechanical , Ventricular Remodeling
6.
Tissue Eng Part A ; 26(5-6): 350-357, 2020 03.
Article in English | MEDLINE | ID: mdl-32085692

ABSTRACT

Tissue engineering is an essential component of developing effective regenerative therapies. In this study, we introduce a promising method to create scaffold-free three-dimensional (3D) tissue engineered multilayered microstructures from cultured cells using the "3D tissue fabrication system" (Regenova®; Cyfuse, Tokyo, Japan). This technique utilizes the adhesive nature of cells. When cells are cultured in nonadhesive wells, they tend to aggregate and form a spheroidal structure. The advantage of this approach is that cellular components can be mixed into one spheroid, thereby promoting the formation of extracellular matrices, such as collagen and elastin. This system enables one to create a predesigned 3D structure composed of cultured cells. We found that the advantages of this system to be (1) the length, size, and shape of the structure that were designable and highly reproducible because of the computer controlled robotics system, (2) the graftable structure could be created within a reasonable period (8 days), and (3) the constructed tissue did not contain any foreign material, which may avoid the potential issues of contamination, biotoxicity, and allergy. The utilization of this robotic system enabled the creation of a 3D multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering. Impact statement The utilization of the "three dimensional tissue fabrication system" enabled the creation of a three-dimensional (3D) multilayered microstructure made of cell-based spheres with a satisfactory mechanical properties and abundant extracellular matrix during a short period of time. These results suggest that this new technology will represent a promising, attractive, and practical strategy in the field of tissue engineering.


Subject(s)
Bioprinting/methods , Extracellular Matrix/chemistry , Humans , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Cells ; 9(1)2020 01 16.
Article in English | MEDLINE | ID: mdl-31963369

ABSTRACT

Newborn mice and piglets exhibit natural heart regeneration after myocardial infarction (MI). Discovering other mammals with this ability would provide evidence that neonatal cardiac regeneration after MI may be a conserved phenotype, which if activated in adults could open new options for treating ischemic cardiomyopathy in humans. Here, we hypothesized that newborn rats undergo natural heart regeneration after MI. Using a neonatal rat MI model, we performed left anterior descending coronary artery ligation or sham surgery in one-day-old rats under hypothermic circulatory arrest (n = 74). Operative survival was 97.3%. At 1 day post-surgery, rats in the MI group exhibited significantly reduced ejection fraction (EF) compared to shams (87.1% vs. 53.0%, p < 0.0001). At 3 weeks post-surgery, rats in the sham and MI groups demonstrated no difference in EF (71.1% vs. 69.2%, respectively, p = 0.2511), left ventricular wall thickness (p = 0.9458), or chamber diameter (p = 0.7801). Masson's trichome and picrosirius red staining revealed minimal collagen scar after MI. Increased numbers of cardiomyocytes positive for 5-ethynyl-2'-deoxyuridine (p = 0.0072), Ki-67 (p = 0.0340), and aurora B kinase (p = 0.0430) were observed within the peri-infarct region after MI, indicating ischemia-induced cardiomyocyte proliferation. Overall, we present a neonatal rat MI model and demonstrate that newborn rats are capable of endogenous neocardiomyogenesis after MI.


Subject(s)
Myocardial Infarction/physiopathology , Regeneration , Animals , Animals, Newborn , Aurora Kinase B/metabolism , Cell Proliferation , Cicatrix/pathology , Collagen/metabolism , Disease Models, Animal , Electrocardiography , Female , Fibrosis , Ki-67 Antigen/metabolism , Ligation , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardial Infarction/surgery , Myocytes, Cardiac/pathology , Rats, Wistar , Time Factors , Troponin/metabolism
8.
Cytokine ; 127: 154974, 2020 03.
Article in English | MEDLINE | ID: mdl-31978642

ABSTRACT

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Subject(s)
Hydrogels/administration & dosage , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardium/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Catheters , Cells, Cultured , Disease Models, Animal , Hepatocyte Growth Factor/metabolism , Humans , Hyaluronic Acid/administration & dosage , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Myocardium/pathology , Rats
9.
Nat Biomed Eng ; 3(8): 611-620, 2019 08.
Article in English | MEDLINE | ID: mdl-31391596

ABSTRACT

Post-operative adhesions form as a result of normal wound healing processes following any type of surgery. In cardiac surgery, pericardial adhesions are particularly problematic during reoperations, as surgeons must release the adhesions from the surface of the heart before the intended procedure can begin, thereby substantially lengthening operation times and introducing risks of haemorrhage and injury to the heart and lungs during sternal re-entry and cardiac dissection. Here we show that a dynamically crosslinked supramolecular polymer-nanoparticle hydrogel, with viscoelastic and flow properties that enable spraying onto tissue as well as robust tissue adherence and local retention in vivo for two weeks, reduces the formation of pericardial adhesions. In a rat model of severe pericardial adhesions, the hydrogel markedly reduced the severity of the adhesions, whereas commercial adhesion barriers (including Seprafilm and Interceed) did not. The hydrogels also reduced the severity of cardiac adhesions (relative to untreated animals) in a clinically relevant cardiopulmonary-bypass model in sheep. This viscoelastic supramolecular polymeric hydrogel represents a promising clinical solution for the prevention of post-operative pericardial adhesions.


Subject(s)
Cardiac Surgical Procedures/methods , Hydrogels/chemistry , Pericardium/surgery , Polymers/chemistry , Tissue Adhesions , Animals , Cellulose, Oxidized , Hyaluronic Acid , Hydrogels/therapeutic use , Male , Models, Animal , Nanoparticles , Polymers/therapeutic use , Rats , Sheep
10.
J Mech Behav Biomed Mater ; 96: 165-171, 2019 08.
Article in English | MEDLINE | ID: mdl-31035067

ABSTRACT

Adverse remodeling of the left ventricle (LV) after myocardial infarction (MI) results in abnormal tissue biomechanics and impaired cardiac function, often leading to heart failure. We hypothesized that intramyocardial delivery of engineered stromal cell-derived factor 1α analog (ESA), our previously-developed supra-efficient pro-angiogenic chemokine, preserves biaxial LV mechanical properties after MI. Male Wistar rats (n = 45) underwent sham surgery (n = 15) or permanent left anterior descending coronary artery ligation. Rats sustaining MI were randomized for intramyocardial injections of either saline (100 µL, n = 15) or ESA (6 µg/kg, n = 15), delivered at four standardized borderzone sites. After 4 weeks, echocardiography was performed, and the hearts were explanted. Tensile testing of the anterolateral LV wall was performed using a displacement-controlled biaxial load frame, and modulus was determined after constitutive modeling. At 4 weeks post-MI, compared to saline controls, ESA-treated hearts had greater wall thickness (1.68 ±â€¯0.05 mm vs 1.42 ±â€¯0.08 mm, p = 0.008), smaller end-diastolic LV internal dimension (6.88 ±â€¯0.29 mm vs 7.69 ±â€¯0.22 mm, p = 0.044), and improved ejection fraction (62.8 ±â€¯3.0% vs 49.4 ±â€¯4.5%, p = 0.014). Histologic analysis revealed significantly reduced infarct size for ESA-treated hearts compared to saline controls (29.4 ±â€¯2.9% vs 41.6 ±â€¯3.1%, p = 0.021). Infarcted hearts treated with ESA exhibited decreased modulus compared to those treated with saline in both the circumferential (211.5 ±â€¯6.9 kPa vs 264.3 ±â€¯12.5 kPa, p = 0.001) and longitudinal axes (194.5 ±â€¯6.5 kPa vs 258.1 ±â€¯14.4 kPa, p < 0.001). In both principal directions, ESA-treated infarcted hearts possessed similar tissue compliance as sham non-infarcted hearts. Overall, intramyocardial ESA therapy improves post-MI ventricular remodeling and function, reduces infarct size, and preserves native LV biaxial mechanical properties.


Subject(s)
Chemokine CXCL12/genetics , Chemokine CXCL12/pharmacology , Heart/drug effects , Heart/physiopathology , Mechanical Phenomena/drug effects , Myocardial Infarction/physiopathology , Protein Engineering , Animals , Biomechanical Phenomena/drug effects , Male , Rats , Rats, Wistar , Ventricular Remodeling/drug effects
11.
Adv Healthc Mater ; 8(5): e1801147, 2019 03.
Article in English | MEDLINE | ID: mdl-30714355

ABSTRACT

Hydrogels have emerged as a diverse class of biomaterials offering a broad range of biomedical applications. Specifically, injectable hydrogels are advantageous for minimally invasive delivery of various therapeutics and have great potential to treat a number of diseases. However, most current injectable hydrogels are limited by difficult and time-consuming fabrication techniques and are unable to be delivered through long, narrow catheters, preventing extensive clinical translation. Here, the development of an easily-scaled, catheter-injectable hydrogel utilizing a polymer-nanoparticle crosslinking mechanism is reported, which exhibits notable shear-thinning and self-healing behavior. Gelation of the hydrogel occurs immediately upon mixing the biochemically modified hyaluronic acid polymer with biodegradable nanoparticles and can be easily injected through a high-gauge syringe due to the dynamic nature of the strong, yet reversible crosslinks. Furthermore, the ability to deliver this novel hydrogel through a long, narrow, physiologically-relevant catheter affixed with a 28-G needle is highlighted, with hydrogel mechanics unchanged after delivery. Due to the composition of the gel, it is demonstrated that therapeutics can be differentially released with distinct elution profiles, allowing precise control over drug delivery. Finally, the cell-signaling and biocompatibility properties of this innovative hydrogel are demonstrated, revealing its wide range of therapeutic applications.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Animals , Cell Line , Drug Delivery Systems/methods , Humans , Male , Mice , NIH 3T3 Cells , Polymers/chemistry , Rats , Rats, Wistar , Tissue Engineering/methods
12.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30686582

ABSTRACT

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Subject(s)
Collateral Circulation/physiology , Heart/growth & development , Regeneration/physiology , Animals , Animals, Newborn/growth & development , Chemokine CXCL12/metabolism , Coronary Vessels/growth & development , Endothelial Cells/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic/physiology , Receptors, CXCR4/metabolism , Signal Transduction
13.
Circulation ; 138(19): 2130-2144, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30474423

ABSTRACT

BACKGROUND: Cardiovascular bypass grafting is an essential treatment for complex cases of atherosclerotic disease. Because the availability of autologous arterial and venous conduits is patient-limited, self-assembled cell-only grafts have been developed to serve as functional conduits with off-the-shelf availability. The unacceptably long production time required to generate these conduits, however, currently limits their clinical utility. Here, we introduce a novel technique to significantly accelerate the production process of self-assembled engineered vascular conduits. METHODS: Human aortic smooth muscle cells and skin fibroblasts were used to construct bilevel cell sheets. Cell sheets were wrapped around a 22.5-gauge Angiocath needle to form tubular vessel constructs. A thin, flexible membrane of clinically approved biodegradable tissue glue (Dermabond Advanced) served as a temporary, external scaffold, allowing immediate perfusion and endothelialization of the vessel construct in a bioreactor. Subsequently, the matured vascular conduits were used as femoral artery interposition grafts in rats (n=20). Burst pressure, vasoreactivity, flow dynamics, perfusion, graft patency, and histological structure were assessed. RESULTS: Compared with engineered vascular conduits formed without external stabilization, glue membrane-stabilized conduits reached maturity in the bioreactor in one-fifth the time. After only 2 weeks of perfusion, the matured conduits exhibited flow dynamics similar to that of control arteries, as well as physiological responses to vasoconstricting and vasodilating drugs. The matured conduits had burst pressures exceeding 500 mm Hg and had sufficient mechanical stability for surgical anastomoses. The patency rate of implanted conduits at 8 weeks was 100%, with flow rate and hind-limb perfusion similar to those of sham controls. Grafts explanted after 8 weeks showed a histological structure resembling that of typical arteries, including intima, media, adventitia, and internal and external elastic membrane layers. CONCLUSIONS: Our technique reduces the production time of self-assembled, cell sheet-derived engineered vascular conduits to 2 weeks, thereby permitting their use as bypass grafts within the clinical time window for elective cardiovascular surgery. Furthermore, our method uses only clinically approved materials and can be adapted to various cell sources, simplifying the path toward future clinical translation.


Subject(s)
Bioprosthesis , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Femoral Artery/surgery , Muscle, Smooth, Vascular/cytology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Aorta/cytology , Blood Flow Velocity , Blood Vessel Prosthesis Implantation/adverse effects , Cells, Cultured , Coculture Techniques , Femoral Artery/pathology , Femoral Artery/physiopathology , Fibroblasts , Humans , Male , Myocytes, Smooth Muscle , Prosthesis Design , Prosthesis Failure , Rats, Nude , Regional Blood Flow , Stress, Mechanical , Tensile Strength , Time Factors , Vascular Patency
14.
J Cardiovasc Transl Res ; 11(4): 274-284, 2018 08.
Article in English | MEDLINE | ID: mdl-29468554

ABSTRACT

Stromal cell-derived factor 1-alpha (SDF) is a potent bone marrow chemokine capable of recruiting circulating progenitor populations to injured tissue. SDF has known angiogenic capabilities, but bone marrow-derived cellular contributions to tissue regeneration remain controversial. Bone marrow from DsRed-transgenic donors was transplanted into recipients to lineage-trace circulating cells after myocardial infarction (MI). SDF was delivered post-MI, and hearts were evaluated for recruitment and plasticity of bone marrow-derived populations. SDF treatment improved ventricular function, border zone vessel density, and CD31+ cell frequency post-MI. Bone marrow-derived endothelial cells were observed; these cells arose through both cell fusion and transdifferentiation. Circulating cells also adopted cardiomyocyte fates, but such events were exceedingly rare and almost exclusively resulted from cell fusion. SDF did not significantly alter the proportion of circulating cells that adopted non-hematopoietic fates. Mechanistic insight into the governance of circulating cells is essential to realizing the full potential of cytokine therapies.


Subject(s)
Chemokine CXCL12/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Animals , Bone Marrow Transplantation , Cell Differentiation , Cells, Cultured , Coronary Vessels/metabolism , Coronary Vessels/pathology , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Myocytes, Cardiac/pathology , Ventricular Function, Left
15.
J Thorac Cardiovasc Surg ; 155(3): 1118-1127.e1, 2018 03.
Article in English | MEDLINE | ID: mdl-29452461

ABSTRACT

OBJECTIVE: Although the mammalian heart's ability to fully regenerate is debated, its potential to extensively repair itself is gaining support. We hypothesized that heart regeneration relies on rapid angiogenesis to support myocardial regrowth and sought to characterize the timeline for angiogenesis and cell proliferation in regeneration. METHODS: One-day-old CD-1 mice (P1, N = 60) underwent apical resection or sham surgery. Hearts were explanted at serial time points from 0 to 30 days postresection and analyzed with immunohistochemistry to visualize vessel ingrowth and cardiomyocyte migration into the resected region. Proliferating cells were labeled with 5-ethynyl-2'-deoxyuridine injections 12 hours before explant. 5-Ethynyl-2'-deoxyuridine-positive cells were counted in both the apex and remote areas of the heart. Masson's trichrome was used to assess fibrosis. RESULTS: By 30 days postresection, hearts regenerated with minimal fibrosis. Compared with sham surgery, apical resection stimulated a significant increase in proliferation of preexisting cardiomyocytes between 3 and 11 days after injury. Capillary migration into the apical thrombus was detected as early as 2 days postresection, with development of mature arteries by 5 days postresection. New vessels became perfused by 5 days postresection as evidenced by lectin injection. Vessel density and diameter significantly increased within the resected area over 21 days, and vessel ingrowth always preceded cardiomyocyte migration, with coalignment of most migrating cardiomyocytes with ingrowing vessels. CONCLUSIONS: Endothelial cells migrate into the apical thrombus early after resection, develop into functional arteries, and precede cardiomyocyte ingrowth during mammalian heart regeneration. This endogenous neonatal response emphasizes the importance of expeditious angiogenesis required for neomyogenesis.


Subject(s)
Cardiac Surgical Procedures , Cell Movement , Cell Proliferation , Coronary Vessels/physiopathology , Endothelial Cells/pathology , Heart/physiopathology , Myocytes, Cardiac/pathology , Neovascularization, Physiologic , Regeneration , Animals , Animals, Newborn , Cells, Cultured , Coculture Techniques , Coronary Circulation , Fibrosis , Mice , Time Factors
16.
Cardiovasc Diabetol ; 16(1): 142, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29096622

ABSTRACT

BACKGROUND: Diabetes mellitus is a risk factor for coronary artery disease and diabetic cardiomyopathy, and adversely impacts outcomes following coronary artery bypass grafting. Current treatments focus on macro-revascularization and neglect the microvascular disease typical of diabetes mellitus-induced cardiomyopathy (DMCM). We hypothesized that engineered smooth muscle cell (SMC)-endothelial progenitor cell (EPC) bi-level cell sheets could improve ventricular dysfunction in DMCM. METHODS: Primary mesenchymal stem cells (MSCs) and EPCs were isolated from the bone marrow of Wistar rats, and MSCs were differentiated into SMCs by culturing on a fibronectin-coated dish. SMCs topped with EPCs were detached from a temperature-responsive culture dish to create an SMC-EPC bi-level cell sheet. A DMCM model was induced by intraperitoneal streptozotocin injection. Four weeks after induction, rats were randomized into 3 groups: control (no DMCM induction), untreated DMCM, and treated DMCM (cell sheet transplant covering the anterior surface of the left ventricle). RESULTS: SMC-EPC cell sheet therapy preserved cardiac function and halted adverse ventricular remodeling, as demonstrated by echocardiography and cardiac magnetic resonance imaging at 8 weeks after DMCM induction. Myocardial contrast echocardiography demonstrated that myocardial perfusion and microvascular function were preserved in the treatment group compared with untreated animals. Histological analysis demonstrated decreased interstitial fibrosis and increased microvascular density in the SMC-EPC cell sheet-treated group. CONCLUSIONS: Treatment of DMCM with tissue-engineered SMC-EPC bi-level cell sheets prevented cardiac dysfunction and microvascular disease associated with DMCM. This multi-lineage cellular therapy is a novel, translatable approach to improve microvascular disease and prevent heart failure in diabetic patients.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Diabetic Cardiomyopathies/prevention & control , Endothelial Progenitor Cells/transplantation , Microvessels , Myocytes, Smooth Muscle/transplantation , Tissue Engineering/methods , Animals , Cells, Cultured , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/physiopathology , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/physiopathology , Disease Models, Animal , Disease Progression , Fibrosis , Microvessels/physiopathology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Rodentia
17.
Biotechnol Bioeng ; 114(10): 2379-2389, 2017 10.
Article in English | MEDLINE | ID: mdl-28574594

ABSTRACT

In the last decade, numerous growth factors and biomaterials have been explored for the treatment of myocardial infarction (MI). While pre-clinical studies have demonstrated promising results, clinical trials have been disappointing and inconsistent, likely due to poor translatability. In the present study, we investigate a potential myocardial regenerative therapy consisting of a protein-engineered dimeric fragment of hepatocyte growth factor (HGFdf) encapsulated in a shear-thinning, self-healing, bioengineered hydrogel (SHIELD). We hypothesized that SHIELD would facilitate targeted, sustained intramyocardial delivery of HGFdf thereby attenuating myocardial injury and post-infarction remodeling. Adult male Wistar rats (n = 45) underwent sham surgery or induction of MI followed by injection of phosphate buffered saline (PBS), 10 µg HGFdf alone, SHIELD alone, or SHIELD encapsulating 10 µg HGFdf. Ventricular function, infarct size, and angiogenic response were assessed 4 weeks post-infarction. Treatment with SHIELD + HGFdf significantly reduced infarct size and increased both ejection fraction and borderzone arteriole density compared to the controls. Thus, sustained delivery of HGFdf via SHIELD limits post-infarction adverse ventricular remodeling by increasing angiogenesis and reducing fibrosis. Encapsulation of HGFdf in SHIELD improves clinical translatability by enabling minimally-invasive delivery and subsequent retention and sustained administration of this novel, potent angiogenic protein analog. Biotechnol. Bioeng. 2017;114: 2379-2389. © 2017 Wiley Periodicals, Inc.


Subject(s)
Delayed-Action Preparations/administration & dosage , Hepatocyte Growth Factor/administration & dosage , Hydrogels/chemistry , Myocardial Infarction/drug therapy , Protein Engineering/methods , Recombinant Proteins/administration & dosage , Ventricular Dysfunction, Left/prevention & control , Angiogenic Proteins/administration & dosage , Angiogenic Proteins/chemistry , Angiogenic Proteins/genetics , Animals , Delayed-Action Preparations/chemistry , Diffusion , Hepatocyte Growth Factor/analogs & derivatives , Hepatocyte Growth Factor/genetics , Injections , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Shear Strength , Treatment Outcome , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/pathology , Viscosity
18.
Sci Adv ; 3(6): e1603078, 2017 06.
Article in English | MEDLINE | ID: mdl-28630913

ABSTRACT

Coronary artery disease is one of the most common causes of death and disability, afflicting more than 15 million Americans. Although pharmacological advances and revascularization techniques have decreased mortality, many survivors will eventually succumb to heart failure secondary to the residual microvascular perfusion deficit that remains after revascularization. We present a novel system that rescues the myocardium from acute ischemia, using photosynthesis through intramyocardial delivery of the cyanobacterium Synechococcus elongatus. By using light rather than blood flow as a source of energy, photosynthetic therapy increases tissue oxygenation, maintains myocardial metabolism, and yields durable improvements in cardiac function during and after induction of ischemia. By circumventing blood flow entirely to provide tissue with oxygen and nutrients, this system has the potential to create a paradigm shift in the way ischemic heart disease is treated.


Subject(s)
Myocardial Ischemia/metabolism , Myocardium/metabolism , Phototrophic Processes , Animals , Biological Therapy , Cyanobacteria , Energy Metabolism , Heart Function Tests , Hypoxia/metabolism , Myocardial Ischemia/physiopathology , Myocardial Ischemia/therapy , Myocytes, Cardiac/metabolism , Photosynthesis , Rats
19.
Circulation ; 132(16): 1528-1537, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26269574

ABSTRACT

BACKGROUND: Hypokalemia is known to promote ventricular arrhythmias, especially in combination with class III antiarrhythmic drugs like dofetilide. Here, we evaluated the underlying molecular mechanisms. METHODS AND RESULTS: Arrhythmias were recorded in isolated rabbit and rat hearts or patch-clamped ventricular myocytes exposed to hypokalemia (1.0-3.5 mmol/L) in the absence or presence of dofetilide (1 µmol/L). Spontaneous early afterdepolarizations (EADs) and ventricular tachycardia/fibrillation occurred in 50% of hearts at 2.7 mmol/L [K] in the absence of dofetilide and 3.3 mmol/L [K] in its presence. Pretreatment with the Ca-calmodulin kinase II (CaMKII) inhibitor KN-93, but not its inactive analogue KN-92, abolished EADs and hypokalemia-induced ventricular tachycardia/fibrillation, as did the selective late Na current (INa) blocker GS-967. In intact hearts, moderate hypokalemia (2.7 mmol/L) significantly increased tissue CaMKII activity. Computer modeling revealed that EAD generation by hypokalemia (with or without dofetilide) required Na-K pump inhibition to induce intracellular Na and Ca overload with consequent CaMKII activation enhancing late INa and the L-type Ca current. K current suppression by hypokalemia and dofetilide alone in the absence of CaMKII activation were ineffective at causing EADs. CONCLUSIONS: We conclude that Na-K pump inhibition by even moderate hypokalemia plays a critical role in promoting EAD-mediated arrhythmias by inducing a positive feedback cycle activating CaMKII and enhancing late INa. Class III antiarrhythmic drugs like dofetilide sensitize the heart to this positive feedback loop.


Subject(s)
Hypokalemia/complications , Ventricular Fibrillation/etiology , Action Potentials , Animals , Benzylamines/therapeutic use , Computer Simulation , Male , Phenethylamines/pharmacology , Pyridines/therapeutic use , Rabbits , Rats , Rats, Inbred F344 , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/physiology , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Triazoles/therapeutic use , Ventricular Fibrillation/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...