Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Nanosci ; : 1-13, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37362150

ABSTRACT

It is known that heavy metal containing nanomaterials can easily prevent the formation of microbial cultures. The emergence of new generation epidemic diseases in the last 2 years has increased the importance of both personal and environmental hygiene. For this reason, in addition to preventing the spread of diseases, studies on alternative disinfectant substances are also carried out. In this study, the antibacterial activity of nanoflower and nanocube, which are easily synthesized and nanoparticle species containing iron, were compared. The antioxidant abilities of new synthesized NF@FeO(OH) and NC@α-Fe2O3 were tested by DPPH scavenging activity assay. The highest DPPH inhibition was achieved with NC@α-Fe2O3 as 71.30% at 200 mg/L. NF@FeO(OH) and NC@α-Fe2O3 demonstrated excellent DNA cleavage ability. The antimicrobial capabilities of NF@FeO(OH) and NC@α-Fe2O3 were analyzed with micro dilution procedure. In 500 mg/L, the antimicrobial activity was 100%. In addition to these, the biofilm inhibition of NF@FeO(OH) and NC@α-Fe2O3 were investigated against S. aureus and P. aeruginosa and it was found that they showed significant antibiofilm inhibition. It is suggested that additional studies can be continued to be developed and used as an antibacterial according to the results of the nanoparticles after various toxicological test systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13204-023-02822-5.

2.
Environ Res ; 234: 116283, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37286123

ABSTRACT

In this study, color removal, suspended solids removal, and salt recovery were investigated from different fabric dyeing wastewaters using a pilot scale treatment system. A pilot scale system was installed in the wastewater outlet area of five different textile companies. Experiments were planned for pollutant removal and salt recovery from wastewater. First, the wastewater was treated by electrooxidation (EO) using graphite electrodes. After a reaction time of 1 h, the wastewater was passed throughout the granular activated carbon (AC) coloumn. The pre-treated wastewater was passed through the membrane (NF) system to recover the salt in the wastewater. Finally, the recovered salt water was used for fabric dyeing. In the pilot scale treatment system (EO + AC + NF), 100% of suspended solids (SS) and an average of 99.37% of color were removed from fabric dyeing wastewaters. At the same time, a high amount of salt water was recovered and reused. Optimum conditions were determined as 4 V current, 1000 A power, wastewater's own pH values and 60 min of reaction time. The energy and operating cost for treatment of 1 m3 of wastewater were determined as 40.0 kWh/m3 and 2.2 US$/m3, respectively. In addition to the prevention of environmental pollution by the treatment of wastewater using the pilot-scale treatment system, the reuse of the recovered water will contribute to the protection of our valuable water resources. In addition, using the NF membrane process after the EO system, it will be possible to recover salt from wastewater with high salt content such as textile wastewater.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Purification , Wastewater , Coloring Agents/chemistry , Textile Industry , Water Pollutants, Chemical/chemistry , Sodium Chloride , Electrodes , Water , Waste Disposal, Fluid
3.
Environ Res ; 216(Pt 1): 114357, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36122703

ABSTRACT

The use of synthetic dyes in the textile industry pollutes a huge amount of water. Thus, wastewater discharged from many textile companies to the receiving environment without being treated causes serious environmental and human health problems. The development of new techniques has become imperative. In this study, it was aimed to remove anionic dye (RR180) and cationic dye (BR18) by Fenton-like and adsorption process with hydrochars obtained from laurel leaves and watermelon peels. In the comparison of the adsorption and Fenton-like processes used in the dye removal of the produced bio-based materials, the Fenton-like process was selected in order to enhance the highest removal efficiency. The effects of various operating factors such as solution pH, amount of catalysts, hydrogen peroxide (H2O2) concentration, and initial dye concentration were evaluated on both dyes removal. The experimental results demonstrated that 99.8% RR180 dye and 98.8% BR18 dye removal efficiency were observed for an initial dye concentration of 100 mg/L with an adsorbent concentration of 1 g/L, H2O2 concentration of 15 µL/L, and optimum pH at the end of 60 min of reaction time. It was observed that an increase in initial dye concentration caused to decrease the dye removal efficiency. The optimum pH for the highest RR180 and BR18 dye removal was 4 and 6, respectively. It was observed that the increase in H2O2 concentration in the solution also decreased the dye removal efficiency. It turned out that catalysts obtained from hydrochars are an effective process for the high removal performance of cationic and anionic dyes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Coloring Agents , Hydrogen Peroxide , Waste Disposal, Fluid/methods , Water Purification/methods , Wastewater
4.
Chemosphere ; 306: 135389, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35718032

ABSTRACT

Nanoflowers are a newly developed class of nanoparticles that show flower-like structures and attract much attention due to their simple preparation methods, high stability, and increased efficiency. The aim of the study is to investigate a strong alternative to reduce the severity of infection and increase the treatment of wastewater by exhibiting biofilm inhibition in medical and environmental applications of the ZnO-NFs with two different shapes. ZnO-NFs were synthesized by two different processes hydrothermal method (named ZnO-NF1) and the precipitation method (named ZnO-NF2). ZnO-NFs produced by two different synthesis methods were compared for the photocatalytic and antioxidant efficiency. The effects of Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes concentration, photocatalyst amount, and reaction time were investigated on dye removal efficiency for photocatalytic experiments. The color was completely removed for 25 mg/L BR18 and RR180 dyes for 75 min and 90 min, respectively, using 1.5 g/L photocatalyst amount using ZnO-NF1. However, 59.18% dye removal efficiency was obtained for 90 min by using a 1.5 g/L ZnO-NF2 photocatalyst for 25 mg/L BR18 dye removal, while a dye removal efficiency of 90.00% was detected for 90 min using 2 g/L ZnO-NF2 for 25 mg/L RR180 dye. Then, comparison of general properties such as antibacterial, antibiofilm, microbial cell viability, DNA fragmentation, antioxidant activities, and antimicrobial photodynamic therapy of ZnO-NFs were investigated. The antioxidant activity of ZnO-NF2 was found to be higher than ZnO-NF1 at each concentration (82.32% and 87.18% for ZnO-NF1 and ZnO-NF2, respectively, at 200 mg/mL).


Subject(s)
Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Catalysis , Coloring Agents/chemistry , Wastewater , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
5.
Chemosphere ; 304: 135210, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35679982

ABSTRACT

One of the most important problems affecting the environment today is the inability to adequately treat wastewater containing dyes. Among of the many treatment processes used in the treatment of dye-containing wastewater, photocatalytic based wastewater treatment processes attract the attention of scientists as a new, economically feasible, and promising approach which has been in practice for a few decades. However, in order to use these processes in wider areas, cheap and effective catalysts are still being developed today. In this study, the photocatalytic activity of eggshell-CaO produced from waste chicken eggshells was investigated for decolorization of Safranin (Basic Red 2) and Reactive Red 180 (RR180) dyes. First, sintering process was applied to the waste chicken eggshells at different temperatures (300, 600, 900 °C) in order to observe CaO formation from the eggshells. Second, the parameters such as photocatalyst amount, pH, concentration of dyes, and reaction time were optimized on dye removal efficiency in photocatalytic experiments. The optimum conditions were performed under visible light and found to be 1 g/L of catalyst amount (sintered at 900 °C), original solution pH (6.80 for Safranin and 6.60 for RR180), and 5 mg/L of dye concentration. The photocatalytic removal efficiencies of Safranin and RR180 dyes were 100% and 97.90%, respectively, under the determined optimum experimental conditions. The adsorption efficiency of the dyes that could be realized during the photocatalytic experiment was measured as 20.99% and 9.99% for Safranin and RR180 dyes, respectively.


Subject(s)
Egg Shell , Wastewater , Animals , Chickens , Coloring Agents , Phenazines
6.
Chemosphere ; 300: 134492, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398064

ABSTRACT

It is very important to treat Cr(VI) from the aquatic environment due to its toxic and harmful effects. Conventional treatment methodology involving biological pathways is generally ineffective for wastewater containing Cr(VI). Therefore, it is necessary to develop environmentally friendly and economical methods to remove Cr(VI) from the aquatic environment. In this study, leonardite, which is a natural mineral that has no harmful effects on the environment, was used for Cr(VI) removal. Leonardite was used in both adsorption and photocatalytic treatment systems by only pulverizing without any chemical treatment. Characterizations of leonardite were obtained using X-ray fluorescence (XRF), fouirer transform infrared spektrofotometre (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses methods. The effects of solution pH (2-10), particle size (45-300 µm), adsorbent dose (0.25-3 g/L), and initial concentration (10-30 mg/L) on Cr(VI) removal efficiency were investigated in both adsorption and photocatalytic experiments. In the adsorption process, a complete removal efficiency (100%) was obtained for 3 g/L of adsorbent dose with an initial Cr(VI) concentration of 10 mg/L at pH 2 for 2 h. In the photocatalytic process, 100% removal efficiency of Cr(VI) was obtained when four times less adsorbent dosage was used under the same conditions. In addition, the reuse of leonardite powder was also investigated under optimum experimental conditions. Leonardite powder preserved approximately 70% of its activity in the photocatalytic process while it lost 50% of its activity after 5 reuses in adsorption process.


Subject(s)
Water Pollutants, Chemical , Adsorption , Chromium/analysis , Hydrogen-Ion Concentration , Kinetics , Minerals , Powders , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL