Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 13: 45, 2013 Mar 16.
Article in English | MEDLINE | ID: mdl-23497245

ABSTRACT

BACKGROUND: Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. RESULTS: Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90-2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90-2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. CONCLUSIONS: QTL meta-analysis provided an overview of the moderately low diversity of loci controlling partial resistance to A. euteiches in four main sources of resistance in pea. Seven highly consistent genomic regions with potential use in marker-assisted-selection were identified. Confidence intervals at several main QTL regions were reduced and co-segregation among resistance and morphological/phenological alleles was identified. Further work will be required to identify the best combinations of QTL for durably increasing partial resistance to A. euteiches.


Subject(s)
Aphanomyces/physiology , Pisum sativum/genetics , Pisum sativum/immunology , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant/genetics , Disease Resistance , Genetic Linkage , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology
2.
Theor Appl Genet ; 123(2): 261-81, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21479935

ABSTRACT

Partial resistances, often controlled by quantitative trait loci (QTL), are considered to be more durable than monogenic resistances. Therefore, a precursor to developing efficient breeding programs for polygenic resistance to pathogens should be a greater understanding of genetic diversity and stability of resistance QTL in plants. In this study, we deciphered the diversity and stability of resistance QTL to Aphanomyces euteiches in pea towards pathogen variability, environments and scoring criteria, from two new sources of partial resistance (PI 180693 and 552), effective in French and USA infested fields. Two mapping populations of 178 recombinant inbred lines each, derived from crosses between 552 or PI 180693 (partially resistant) and Baccara (susceptible), were used to identify QTL for Aphanomyces root rot resistance in controlled and in multiple French and USA field conditions using several resistance criteria. We identified a total of 135 additive-effect QTL corresponding to 23 genomic regions and 13 significant epistatic interactions associated with partial resistance to A. euteiches in pea. Among the 23 additive-effect genomic regions identified, five were consistently detected, and showed highly stable effects towards A. euteiches strains, environments, resistance criteria, condition tests and RIL populations studied. These results confirm the complexity of inheritance of partial resistance to A. euteiches in pea and provide good bases for the choice of consistent QTL to use in marker-assisted selection schemes to increase current levels of resistance to A. euteiches in pea breeding programs.


Subject(s)
Aphanomyces/pathogenicity , Pisum sativum/genetics , Plant Diseases , Plant Roots , Quantitative Trait Loci , Chromosome Mapping , Chromosomes, Plant , Crosses, Genetic , France , Genetic Linkage , Genotype , Immunity, Innate , Pisum sativum/immunology , Pisum sativum/microbiology , Phenotype , Plant Diseases/genetics , Plant Diseases/immunology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/microbiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...