Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Neurol Phys Ther ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709008

ABSTRACT

BACKGROUND AND PURPOSE: Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. METHODS: Collegiate soccer (N = 33) and non-soccer athletes (N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. RESULTS: Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. DISCUSSION AND CONCLUSIONS: Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472).

2.
Neuroimage Clin ; 42: 103585, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38531165

ABSTRACT

Resting state functional magnetic resonance imaging (rsfMRI) provides researchers and clinicians with a powerful tool to examine functional connectivity across large-scale brain networks, with ever-increasing applications to the study of neurological disorders, such as traumatic brain injury (TBI). While rsfMRI holds unparalleled promise in systems neurosciences, its acquisition and analytical methodology across research groups is variable, resulting in a literature that is challenging to integrate and interpret. The focus of this narrative review is to address the primary methodological issues including investigator decision points in the application of rsfMRI to study the consequences of TBI. As part of the ENIGMA Brain Injury working group, we have collaborated to identify a minimum set of recommendations that are designed to produce results that are reliable, harmonizable, and reproducible for the TBI imaging research community. Part one of this review provides the results of a literature search of current rsfMRI studies of TBI, highlighting key design considerations and data processing pipelines. Part two outlines seven data acquisition, processing, and analysis recommendations with the goal of maximizing study reliability and between-site comparability, while preserving investigator autonomy. Part three summarizes new directions and opportunities for future rsfMRI studies in TBI patients. The goal is to galvanize the TBI community to gain consensus for a set of rigorous and reproducible methods, and to increase analytical transparency and data sharing to address the reproducibility crisis in the field.

3.
Mil Med ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401164

ABSTRACT

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.

4.
J Neurotrauma ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38323539

ABSTRACT

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.

5.
J Athl Train ; 59(3): 289-296, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37681681

ABSTRACT

CONTEXT: Concussion research has primarily focused on sport-related mechanisms and excluded non-sport-related mechanisms. In adult populations, non-sport-related concussions (non-SRCs) demonstrated worse clinical outcomes compared with sport-related concussions (SRCs); however, investigations of non-SRCs in college-aged patients are limited. OBJECTIVES: To examine clinical outcomes in collegiate athletes with non-SRCs compared with SRCs and explore sex differences in outcomes among collegiate athletes with non-SRCs. DESIGN: Prospective cohort study. SETTING: Clinical setting. PATIENTS OR OTHER PARTICIPANTS: A total of 3500 athletes were included (n = 555 with non-SRCs, 42.5% female) from colleges or universities and service academies participating in the National Collegiate Athletic Association Department of Defense Concussion Assessment, Research and Education (CARE) Consortium. MAIN OUTCOME MEASURE(S): Dichotomous outcomes (yes or no) consisted of immediate reporting, mental status alterations, loss of consciousness, posttraumatic amnesia, retrograde amnesia, motor impairments, delayed symptom presentation, and required hospital transport. Continuous outcomes were symptom severity, days with concussion symptoms, and days lost to injury. Data were collected within 24 to 48 hours of injury and at return to play. Adjusted relative risks (ARRs) compared the likelihood of dichotomous outcomes by mechanism and by sex within patients with non-SRCs. Multivariate negative binomial regressions were used to assess group differences in continuous variables. RESULTS: Athletes with non-SRCs were less likely to report immediately (ARR = 0.73, 95% CI = 0.65, 0.81) and more likely to report delayed symptom presentation (ARR = 1.17, 95% CI = 1.03, 1.32), loss of consciousness (ARR = 3.15, 95% CI = 2.32, 4.28), retrograde amnesia (ARR = 1.77, 95% CI = 1.22, 2.57), and motor impairment (ARR = 1.45, 95% CI = 1.14, 1.84). Athletes with non-SRCs described greater symptom severity, more symptomatic days, and more days lost to injury (P < .001) compared with those who had SRCs. Within the non-SRC group, female athletes indicated greater symptom severity, more symptomatic days, and more days lost to injury (P < .03) than male athletes. CONCLUSIONS: Athletes with non-SRCs had worse postinjury outcomes compared with those who had SRCs, and female athletes with non-SRCs had worse recovery metrics than male athletes. Our findings suggest that further investigation of individuals with non-SRCs is needed to improve concussion reporting and management.


Subject(s)
Athletic Injuries , Brain Concussion , Sports , Adult , Humans , Male , Female , Young Adult , Athletic Injuries/diagnosis , Athletic Injuries/therapy , Prospective Studies , Brain Concussion/diagnosis , Brain Concussion/therapy , Unconsciousness
6.
Sports Med ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133787

ABSTRACT

OBJECTIVES: The purpose of this study was to determine sex differences in recovery trajectories of assessments for sport-related concussion using Concussion Assessment, Research and Education (CARE) Consortium data. METHODS: National Collegiate Athletic Association athletes (N = 906; 61% female) from sex-comparable sports completed a pre-season baseline assessment and post-sport-related concussion assessments within 6 h of injury, 24-48 h, when they initiated their return to play progression, when they were cleared for unrestricted return to play, and 6 months post-injury. Assessments included the Standardized Assessment of Concussion, Balance Error Scoring System, Brief Symptom Inventory-18, Immediate Post-concussion Assessment and Cognitive Testing (ImPACT), Sport Concussion Assessment Tool-3 symptom evaluation, Clinical Reaction Time, King-Devick test, Vestibular Ocular Motor Screen, 12-item Short-Form Health Survey, Hospital Anxiety and Depression Scale, and Satisfaction with Life Scale. RESULTS: Only the Vestibular Ocular Motor Screen Total Symptom Score at the 24-48 h timepoint (p = 0.005) was statistically significantly different between sexes. Specifically, female athletes (mean = 60.2, 95% confidence interval [CI] 51.5-70.4) had higher Vestibular Ocular Motor Screen Total Symptom Scores than male athletes (mean = 36.9, 95% CI 27.6-49.3), but this difference resolved by the time of return-to-play initiation (female athletes, mean = 1.8, 95% CI 1.1-2.9; male athletes, mean = 4.1, 95% CI 1.5-10.9). CONCLUSIONS: Sport-related concussion recovery trajectories for most assessments were similar for female and male National Collegiate Athletic Association athletes except for Vestibular Ocular Motor Screen symptoms within 48 h of sport-related concussion, which was greater in female athletes. Female athletes had a greater symptom burden across all timepoints, suggesting that cross-sectional observations may indicate sex differences despite similar recovery trajectories.

7.
Front Neurol ; 14: 1276437, 2023.
Article in English | MEDLINE | ID: mdl-38156092

ABSTRACT

Introduction: The relation between traumatic brain injury (TBI), its acute and chronic symptoms, and the potential for remote neurodegenerative disease is a priority for military research. Structural and functional connectivity (FC) of the basal ganglia, involved in motor tasks such as walking, are altered in some samples of Service Members and Veterans with TBI, but any behavioral implications are unclear and could further depend on the context in which the TBI occurred. Methods: In this study, FC from caudate and pallidum seeds was measured in Service Members and Veterans with a history of mild TBI that occurred during combat deployment, Service Members and Veterans whose mild TBI occurred outside of deployment, and Service Members and Veterans who had no lifetime history of TBI. Results: FC patterns differed for the two contextual types of mild TBI. Service Members and Veterans with deployment-related mild TBI demonstrated increased FC between the right caudate and lateral occipital regions relative to both the non-deployment mild TBI and TBI-negative groups. When evaluating the association between FC from the caudate and gait, the non-deployment mild TBI group showed a significant positive relationship between walking time and FC with the frontal pole, implicated in navigational planning, whereas the deployment-related mild TBI group trended towards a greater negative association between walking time and FC within the occipital lobes, associated with visuo-spatial processing during navigation. Discussion: These findings have implications for elucidating subtle motor disruption in Service Members and Veterans with deployment-related mild TBI. Possible implications for future walking performance are discussed.

8.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37966838

ABSTRACT

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adolescent , Humans , Child , Female , Male , Cohort Studies , Retrospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebellum/diagnostic imaging , Atrophy
9.
Ann Biomed Eng ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37751028

ABSTRACT

Concussion has been described in the United States (US) collegiate student-athlete population, but female-specific findings are often underrepresented and underreported. Our study aimed to describe female collegiate student-athletes' initial injury characteristics and return to activity outcomes following concussion. Female collegiate student-athletes (n = 1393) from 30-US institutions experienced a concussion and completed standardized, multimodal concussion assessments from pre-injury through unrestricted return to play (uRTP) in this prospective, longitudinal cohort study. Initial injury presentation characteristics, assessment, and return to activity outcomes [<48-h (acute), return to learn, initiate return to play (iRTP), uRTP] were collected. We used descriptive statistics to report injury characteristics, return to activity outcomes, and post-injury assessment performance change categorization (worsened, unchanged, improved) based on change score confidence rank criteria across sport contact classifications [contact (n = 661), limited (n = 446), non-contact (n = 286)]. The median (25th to 75th percentile) days to return to learn was 6.0 (3.0-10.0), iRTP was 8.1 (4.8-13.8), and uRTP was 14.8 (9.9-24.0), but varied by contact classification. Across contact levels, the majority experienced worse SCAT total symptom severity (72.8-82.6%), ImPACT reaction time (91.2-92.6%), and BSI-18 total score (45.2-51.8%) acutely relative to baseline, but unchanged BESS total errors (58.0-60.9%), SAC total score (71.5-76.1%), and remaining ImPACT domains (50.6-66.5%). Our findings provide robust estimates of the typical female collegiate student-athlete presentation and recovery trajectory following concussion, with overall similar findings to the limited female collegiate student-athlete literature. Overall varying confidence rank classification was observed acutely. Our findings provide clinically-relevant insights for athletes, clinicians, researchers, and policymakers to inform efforts specific to females experiencing concussion.

10.
Ann Biomed Eng ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37743459

ABSTRACT

Mild traumatic brain injury (mTBI) has been described in the United States (US) military service academy cadet population, but female-specific characteristics and recovery outcomes are poorly characterized despite sex being a confounder. Our objective was to describe female cadets' initial characteristics, assessment performance, and return-to-activity outcomes post-mTBI. Female cadets (n = 472) from the four US military service academies who experienced a mTBI completed standardized mTBI assessments from pre-injury to acute initial injury and unrestricted return-to-duty (uRTD). Initial injury presentation characteristics (e.g., delayed symptoms, retrograde amnesia) and return-to-activity outcomes [i.e., return-to-learn, initiate return-to-duty protocol (iRTD), uRTD] were documented. Descriptive statistics summarized female cadets' injury characteristics, return-to-activity outcomes, and post-mTBI assessment performance change categorization (worsened, unchanged, improved) relative to pre-injury baseline using established change score confidence rank criteria for each assessment score. The median (interquartile range) days to return-to-learn (n = 157) was 7.0 (3.0-14.0), to iRTD (n = 412) was 14.7 (8.6-25.8), and to uRTD (n = 431) was 26.0 (17.7-41.8). The majority experienced worse SCAT total symptom severity (77.8%) and ImPACT reaction time (97.0%) acutely < 24-h versus baseline, but unchanged BESS total errors (75.2%), SAC total score (72%), BSI-18 total score (69.6%), and ImPACT verbal memory (62.3%), visual memory (58.4%), and visual motor speed (52.5%). We observed similar return-to-activity times in the present female cadet cohort relative to the existing female-specific literature. Confidence ranks categorizing post-mTBI performance were heterogenous and indicate multimodal assessments are necessary. Our findings provide clinically relevant insights to female cadets experiencing mTBI across the US service academies for stakeholders providing healthcare.

11.
J Interpers Violence ; 38(13-14): 8476-8499, 2023 07.
Article in English | MEDLINE | ID: mdl-36866584

ABSTRACT

Military sexual trauma (MST) has deleterious long-term psychological consequences. Among female U.S. military members, MST is associated with increased risk for future interpersonal victimization, such as experiencing intimate partner violence (IPV). Few studies have investigated the implications of the cumulative effects of IPV and MST on psychological functioning. This study examined rates of co-exposure to MST, IPV, and their cumulative impact on psychological symptoms. Data were collected from 308 female Veterans (FVets; age: M = 42, SD = 10.4) enrolled in an inpatient trauma-focused treatment program in a Veterans Administration (VA) hospital. Data were collected at program admission on symptoms of posttraumatic stress disorder (PTSD), depression, and current suicidal ideation. Lifetime trauma exposure was assessed using semi-structured interviews that identified adverse childhood events (ACEs) and combat theater deployment as well as MST and IPV. Group differences on psychological symptoms were examined among those exposed to MST, IPV, MST + IPV, and compared to FVets with ACEs or combat exposure, but no other adulthood interpersonal trauma (NAIT). Half of the sample (51%) reported experiencing both MST and IPV, approximately 29% reported MST, 10% reported IPV, and 10% reported NAIT. FVets in the MST + IPV group had worse PTSD and depression symptoms than either the MST or IPV groups. The NAIT group had the lowest scores on these measures. There were no group differences in current suicidal ideation; however, 53.5% reported at least one previous suicide attempt. FVets in this sample reported significant lifetime exposure to MST and IPV, with the majority having experienced MST + IPV. Exposure to MST + IPV was associated with greater PTSD and depression symptom severity, yet an overwhelming proportion reported current and past suicidal ideation regardless of trauma exposure history. These results demonstrate the importance of assessing for lifetime interpersonal trauma history when developing and providing mental and medical health interventions for FVets.


Subject(s)
Intimate Partner Violence , Military Personnel , Sex Offenses , Stress Disorders, Post-Traumatic , Veterans , Female , Humans , Adult , Child , Veterans/psychology , Military Sexual Trauma , Sex Offenses/psychology , Military Personnel/psychology , Intimate Partner Violence/psychology , Stress Disorders, Post-Traumatic/psychology , Outcome Assessment, Health Care
12.
J Clin Neurophysiol ; 40(5): 398-407, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36930218

ABSTRACT

SUMMARY: Sport-related concussion (SRC) affects an estimated 1.6 to 3.8 million Americans each year. Sport-related concussion results from biomechanical forces to the head or neck that lead to a broad range of neurologic symptoms and impaired cognitive function. Although most individuals recover within weeks, some develop chronic symptoms. The heterogeneity of both the clinical presentation and the underlying brain injury profile make SRC a challenging condition. Adding to this challenge, there is also a lack of objective and reliable biomarkers to support diagnosis, to inform clinical decision making, and to monitor recovery after SRC. In this review, the authors provide an overview of advanced neuroimaging techniques that provide the sensitivity needed to capture subtle changes in brain structure, metabolism, function, and perfusion after SRC. This is followed by a discussion of emerging neuroimaging techniques, as well as current efforts of international research consortia committed to the study of SRC. Finally, the authors emphasize the need for advanced multimodal neuroimaging to develop objective biomarkers that will inform targeted treatment strategies after SRC.


Subject(s)
Athletic Injuries , Brain Concussion , Humans , Athletic Injuries/diagnostic imaging , Athletic Injuries/therapy , Brain Concussion/diagnosis , Brain/diagnostic imaging , Neuroimaging/methods , Biomarkers
13.
J Head Trauma Rehabil ; 38(4): E254-E266, 2023.
Article in English | MEDLINE | ID: mdl-36602276

ABSTRACT

OBJECTIVE: Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) commonly occur among military Service Members and Veterans and have heterogenous, but also overlapping symptom presentations, which often complicate the diagnoses of underlying impairments and development of effective treatment plans. Thus, we sought to examine whether the combination of whole brain gray matter (GM) and white matter (WM) structural measures with neuropsychological performance can aid in the classification of military personnel with mTBI and PTSD. METHODS: Active-Duty US Service Members ( n = 156; 87.8% male) with a history of mTBI, PTSD, combined mTBI+PTSD, or orthopedic injury completed a neuropsychological battery and T1- and diffusion-weighted structural neuroimaging. Cortical, subcortical, ventricular, and WM volumes and whole brain fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated. Latent profile analyses were performed to determine how the GM and WM indicators, together with neuropsychological indicators, classified individuals. RESULTS: For both GM and WM, respectively, a 4-profile model was the best fit. The GM model identified greater ventricular volumes in Service Members with cognitive symptoms, including those with a diagnosis of mTBI, either alone or with PTSD. The WM model identified reduced FA and elevated RD in those with psychological symptoms, including those with PTSD or mTBI and comorbid PTSD. However, contrary to expectation, a global neural signature unique to those with comorbid mTBI and PTSD was not identified. CONCLUSIONS: The findings demonstrate that neuropsychological performance alone is more robust in differentiating Active-Duty Service Members with mTBI and PTSD, whereas global neuroimaging measures do not reliably differentiate between these groups.


Subject(s)
Brain Concussion , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Male , Humans , Female , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnosis , Brain/diagnostic imaging , Veterans/psychology , Neuroimaging
14.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36712107

ABSTRACT

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

15.
Med Sci Sports Exerc ; 55(3): 409-417, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36288576

ABSTRACT

PURPOSE: The purpose of this study was to determine changes in neurocognitive, psychosocial, and balance functioning in collegiate male and female soccer players across three consecutive years of baseline testing compared with a control group of noncontact athletes. METHODS: Generalized estimating equations were used to compare changes in annual, preseason baseline measures of neurocognitive function, neurobehavioral and psychological symptoms, and postural stability between collegiate soccer players ( n = 75; 51 [68%] female soccer players) and noncontact athletes ( n = 210; 133 [63%] female noncontact athletes) across three consecutive years. RESULTS: Among all participants, the group-time interaction was not significant for any outcome measures. Overall, soccer players reported lower (better) Brief Symptom Inventory 18 Depression ( P = 0.004, Exp(B) = 0.36, 95% confidence interval [CI] = 0.18-0.73), Global Severity Index ( P = 0.006, Exp(B) = 0.53, 95% CI = 0.33-0.84), and Post-Concussion Symptom Scale Symptom Severity ( P < 0.001, Exp(B) = 0.45, 95% CI = 0.22-0.95) scores than noncontact athletes. No other outcome measures were different between soccer players and noncontact athletes. CONCLUSIONS: Among collegiate athletes, soccer players report similar or better psychosocial functioning and symptom scores than noncontact athletes. Importantly, neurocognitive functioning, neurobehavioral and psychological symptoms, and postural stability do not worsen over time in collegiate soccer players relative to their noncontact counterparts. Our findings suggest that despite possible exposure to repetitive head impacts, collegiate soccer players do not exhibit changes in observable function and symptoms across multiple seasons.


Subject(s)
Athletic Injuries , Brain Concussion , Soccer , Humans , Male , Female , Brain Concussion/diagnosis , Athletes , Cognition
16.
J Diet Suppl ; 20(6): 911-925, 2023.
Article in English | MEDLINE | ID: mdl-36325965

ABSTRACT

Due to documented adverse events, understanding the prevalence of nutritional supplements commonly used by athletes is essential. This cross-sectional study used data from a web-based survey conducted in February-March 2022. Participants were Division I (DI) and Division III (DIII) student-athletes of the National Collegiate Athletic Association (NCAA). Chi-square tests were conducted to identify the differences in the prevalence of demographic and athletic characteristics between the divisions. Multivariable odds ratios and 95% confidence intervals were calculated using logistic regression adjusting for potential confounders to determine the predictors of supplement usage. A total of 247 NCAA student-athletes (72.5% Division I, 27.5% Division III) completed the survey, yielding a 24.5% response rate. There were no significant differences between nutritional supplementation and NCAA divisions. Instead, all student-athletes used supplements regardless of division. There were significant differences in race, ethnicity, sports dietitian access, name, image, and likeness (NIL), advisement to consume NS, and knowledge of NS between the divisions (all P-values < 0.01). Unadjusted regression models showed that being in an upper-level academic standing was associated with higher odds of using sports food and ergogenic supplements than student-athletes with a lower-level academic standing. However, multivariable logistic regression analysis revealed that none of the demographic and athletic characteristics significantly affected supplement usage. Allocating resources for access to sports dietitians and supplement education for all divisions may benefit student-athletes knowledge and safety.


Subject(s)
Sports , Humans , Cross-Sectional Studies , Athletes , Dietary Supplements , Students
17.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36583562

ABSTRACT

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , White Matter , Humans , Adult , White Matter/pathology , Neuropsychological Tests , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain
18.
Neuropsychology ; 37(3): 237-246, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35549387

ABSTRACT

OBJECTIVE: In this position article, we highlight the importance of considering cultural and linguistic variables that influence neuropsychological test performance and the possible moderating impact on our understanding of brain/behavior relationships. Increasingly, neuropsychologists are realizing that cultural and language differences between countries, regions, and ethnic groups influence neuropsychological outcomes, as test scores may not have the same interpretative meaning across cultures. Furthermore, attempts to apply the same norms across diverse populations without accounting for culture and language variations will result in detrimental ethical dilemmas, such as misdiagnosis of clinical conditions and inaccurate interpretations of research outcomes. Given the lack of normative data for ethnically and linguistically diverse communities, it is often challenging to merge data across diverse populations to investigate research questions of global significance. Methodological Considerations: We highlight some of the inherent challenges, limitations, and opportunities for efforts to harmonize cross-cultural neuropsychological data. We also explore some of the cultural factors that should be considered when attempting to harmonize cross-cultural neuropsychological data, sources of variance that should be accounted for in data analyses, and the need to identify evaluative criteria for interpreting data outcomes of cross-cultural harmonization approaches. CONCLUSION: In the future, it will be important to further solidify principles for aggregating data across diverse cultural and linguistic cohorts, validate whether assumptions are being satisfied regarding the relationship between neuropsychological measures and the brain and/or behavior of individuals from diverse cultural and linguistic backgrounds, as well as methods for evaluating relative successful validation for data harmonization efforts. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Cross-Cultural Comparison , Language , Humans , Ethnicity , Brain , Neuropsychological Tests
19.
J Head Trauma Rehabil ; 37(6): E438-E448, 2022.
Article in English | MEDLINE | ID: mdl-35452025

ABSTRACT

OBJECTIVE: To determine whether cognitive and psychological symptom profiles differentiate clinical diagnostic classifications (eg, history of mild traumatic brain injury [mTBI] and posttraumatic stress disorder [PTSD]) in military personnel. METHODS: US Active-Duty Service Members ( N = 209, 89% male) with a history of mTBI ( n = 56), current PTSD ( n = 23), combined mTBI + PTSD ( n = 70), or orthopedic injury controls ( n = 60) completed a neuropsychological battery assessing cognitive and psychological functioning. Latent profile analysis was performed to determine how neuropsychological outcomes of individuals clustered together. Diagnostic classifications (ie, mTBI, PTSD, mTBI + PTSD, and orthopedic injury controls) within each symptom profile were examined. RESULTS: A 5-profile model had the best fit. The profiles differentiated subgroups with high (34.0%) or normal (21.5%) cognitive and psychological functioning, cognitive symptoms (19.1%), psychological symptoms (15.3%), and combined cognitive and psychological symptoms (10.0%). The symptom profiles differentiated participants as would generally be expected. Participants with PTSD were mainly represented in the psychological symptom subgroup, while orthopedic injury controls were mainly represented in the high-functioning subgroup. Further, approximately 79% of participants with comorbid mTBI and PTSD were represented in a symptomatic group (∼24% = cognitive symptoms, ∼29% = psychological symptoms, and 26% = combined cognitive/psychological symptoms). Our results also showed that approximately 70% of military personnel with a history of mTBI were represented in the high- and normal-functioning groups. CONCLUSIONS: These results demonstrate both overlapping and heterogeneous symptom and performance profiles in military personnel with a history of mTBI, PTSD, and/or mTBI + PTSD. The overlapping profiles may underscore why these diagnoses are often difficult to diagnose and treat, but suggest that advanced statistical models may aid in identifying profiles representing symptom and cognitive performance impairments within patient groups and enable identification of more effective treatment targets.


Subject(s)
Brain Concussion , Cognitive Dysfunction , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Male , Humans , Female , Brain Concussion/epidemiology , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Military Personnel/psychology , Comorbidity , Cognitive Dysfunction/diagnosis , Veterans/psychology
20.
Sci Med Footb ; 6(3): 331-339, 2022 08.
Article in English | MEDLINE | ID: mdl-35311487

ABSTRACT

Soccer athletes experience repetitive head impacts (RHI) through purposeful heading and unintentional head impacts, which may be associated with acute and chronic brain injury. Previous soccer studies have sought to quantify and characterize RHI, but to-date no consistent, standardized methods exist. The Heads-Up Checklist (HUC), originally used for characterizing head impacts in hockey, was modified to be used in soccer (soccer HUC [SHUC]). Our aim was to determine the reliability of quantifying ball-to-head impacts using video verification and to develop and test the reliability of the SHUC to characterize RHI in soccer. Two trained reviewers used the SHUC to quantify ball-to-head impacts and characterize non-ball-to-head impacts in 38 male and female collegiate soccer matches. Intraclass correlation coefficient (ICC) and Cohen's Kappa were used to assess interrater reliability. Independent t-tests and chi-square analyses were used to examine sex differences. The interrater reliability for quantifying ball-to-head impacts was excellent (ICC = 0.97); however, only half of the non-ball-to-head impact characteristics had acceptable interrater reliability with two reviewers. The number of ball-to-head-impacts and RHI characteristics were consistent between males and females (gggp > 0.05). Our results suggest that the SHUC is an applicable standardized method to quantify and characterize RHI from video footage of soccer matches; however, accurately characterizing some aspects of RHI is a challenging task that may be supplemented by head impact sensor data.


Subject(s)
Brain Concussion , Hockey , Soccer , Athletes , Female , Hockey/injuries , Humans , Male , Reproducibility of Results , Soccer/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...