Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0254299, 2022.
Article in English | MEDLINE | ID: mdl-35344556

ABSTRACT

The Philippine archipelago was believed to have never been connected to the Asian continent even during the severe Quaternary sea-level drops. As a result, the history of domestic pig (Sus scrofa) dispersal in the Philippines remains controversial and must have some anthropogenic origin associated with human migration events. In this study, the context of origin, dispersal, and the level of genetic introgression in Philippine domestic pigs were deduced using mitochondrial DNA D-loop analysis altogether with domestic pigs and wild boar corresponding to their geographic origin. The results revealed considerable genetic diversity (0.900±0.016) and widespread Asian pig-ancestry (94.60%) in the phylogenetic analysis, with admixed European pig-origin (5.10%) harboring various fractions of ancestry from Berkshire and Landrace. The close genetic connection between the continental wild boars and domestic pigs present in the Philippine domestic pigs corroborates our hypothesis of a genetic signal that may be associated with the recently reported multiple waves of human migrations to the Philippines. The Haplogroup D7, reported to occur only in Indo-Burma Biodiversity Hotspots, included a high frequency of Philippine domestic pig haplotypes (54.08%), which poses an interesting challenge because its distribution is not consistent with the hypothesized migration route of Neolithic Austronesian-speaking populations. We detected the first Pacific Clade signature and ubiquitously distributed D2 haplotypes (Asian major) on several Philippine islands. The analyses of mismatch distribution and neutrality test were consistent with the Bayesian skyline plot which showed a long stationary period of effective population size. The population decline was consistent with the pronounced population bottleneck in Asian and European pigs during the interglacial periods of the Pleistocene. The results of this study will support the conservation strategies and improvements of economically important genetic resources in the Philippines.


Subject(s)
DNA, Mitochondrial , Sus scrofa , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genetic Variation , Haplotypes , Philippines , Phylogeny , Sus scrofa/genetics , Swine/genetics
2.
Front Genet ; 12: 698401, 2021.
Article in English | MEDLINE | ID: mdl-34367257

ABSTRACT

The Philippines is considered one of the biodiversity hotspots for animal genetic resources. In spite of this, population genetic structure, genetic diversity, and past population history of Philippine chickens are not well studied. In this study, phylogeny reconstruction and estimation of population genetic structure were based on 107 newly generated mitochondrial DNA (mtDNA) complete D-loop sequences and 37 previously published sequences of Philippine chickens, consisting of 34 haplotypes. Philippine chickens showed high haplotypic diversity (Hd = 0.915 ± 0.011) across Southeast Asia and Oceania. The phylogenetic analysis and median-joining (MJ) network revealed predominant maternal lineage haplogroup D classified throughout the population, while support for Philippine-Pacific subclade was evident, suggesting a Philippine origin of Pacific chickens. Here, we observed Philippine red junglefowls (RJFs) at the basal position of the tree within haplogroup D indicating an earlier introduction into the Philippines potentially via mainland Southeast Asia (MSEA). Another observation was the significantly low genetic differentiation and high rate of gene flow of Philippine chickens into Pacific chicken population. The negative Tajima's D and Fu's Fs neutrality tests revealed that Philippine chickens exhibited an expansion signal. The analyses of mismatch distribution and neutrality tests were consistent with the presence of weak phylogeographic structuring and evident population growth of Philippine chickens (haplogroup D) in the islands of Southeast Asia (ISEA). Furthermore, the Bayesian skyline plot (BSP) analysis showed an increase in the effective population size of Philippine chickens, relating with human settlement, and expansion events. The high level of genetic variability of Philippine chickens demonstrates conservation significance, thus, must be explored in the future.

3.
J Poult Sci ; 56(4): 237-244, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-32055220

ABSTRACT

A study was conducted to provide genetic information on the matrilineal phylogeny and genetic diversity of Red junglefowl (RJF) and native chickens in Samar Island, Philippines and to identify the genetic distance between Philippine junglefowls and other RJF species in Southeast Asia using complete mitochondrial DNA D-loop sequences. A total of 5 RJFs and 43 native chickens from Samar Island were included in this study. The results showed that Samar RJFs had a nucleotide diversity of 0.0050±0.0016, which was lower than those of three subspecies of Gallus gallus: G. g. gallus, G. g. spadiceus, and G. g. jabouillei. Meanwhile, Samar native chickens showed lower nucleotide diversity (0.0056±0.0004) than domestic fowls in some neighboring Southeast Asian countries, but higher than those in African and European countries. Phylogenetic analysis showed that 3 haplotypes of Samar RJFs clustered to haplogroup D1, and that 2 haplotypes clustered to haplogroup D2. Chickens native to Samar Island showed 100% resemblance to those in the haplogroup shared by domestic chickens and RJFs. Haplogroups A and B and sub-haplogroups D1 and E1 were the more widely distributed matrilineal lineages in Samar Island. Phylogenetic analysis of Samar RJFs showed that they were closely related to Myanmar RJFs (99.6%), Indonesia RJFs (99.5%), and Thailand RJFs (99.1%). This study is an initial investigation estimating the matrilineal phylogeny and genetic diversity of chicken populations in Samar Island, Philippines for developing strategies aimed at the future conservation and improvement of valuable genetic resources.

SELECTION OF CITATIONS
SEARCH DETAIL