ABSTRACT
The COVID-19 pandemic has caused a global health crisis, and wastewater-based epidemiology (WBE) has emerged as an important tool to assist public health decision-making. Recent studies have shown that the SARS-CoV-2 RNA concentration in wastewater samples is a reliable indicator of the severity of the pandemic for large populations. However, few studies have established a strong correlation between the number of infected people and the viral concentration in wastewater due to variations in viral shedding over time, viral decay, infiltration, and inflow. Herein we present the relationship between the number of COVID-19-positive patients and the viral concentration in wastewater samples from three different hospitals (A, B, and C) in the city of Belo Horizonte, Minas Gerais, Brazil. A positive and strong correlation between wastewater SARS-CoV-2 concentration and the number of confirmed cases was observed for Hospital B for both regions of the N gene (R = 0.89 and 0.77 for N1 and N2, respectively), while samples from Hospitals A and C showed low and moderate correlations, respectively. Even though the effects of viral decay and infiltration were minimized in our study, the variability of viral shedding throughout the infection period and feces dilution due to water usage for different activities in the hospitals could have affected the viral concentrations. These effects were prominent in Hospital A, which had the smallest sewershed population size, and where no correlation between the number of defecations from COVID-19 patients and viral concentration in wastewater was observed. Although we could not determine trends in the number of infected patients through SARS-CoV-2 concentrations in hospitals' wastewater samples, our results suggest that wastewater monitoring can be efficient for the detection of infected individuals at a local level, complementing clinical data.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Wastewater , Brazil/epidemiology , RNA, Viral , HospitalsABSTRACT
Investigating waterborne viruses is of great importance to minimizing risks to public health. Viruses tend to adsorb to sludge particles from wastewater processes by electrostatic and hydrophobic interactions between virus, aquatic matrix, and particle surface. Sludge is often re-used in agriculture; therefore, its evaluation is also of great interest to public health. In the present study, a pilot scale system treating real domestic wastewater from a large city in Brazil was used to evaluate the removal, the overall reduction, and liquid-solid partitioning of human adenovirus (HAdV), the novel coronavirus (SARS-CoV-2) and fecal indicators (F-specific coliphages and E. coli). The system consists of a high-rate algal pond (HRAP) post-treating the effluent of an upflow anaerobic sludge blanket (UASB) reactor. Samples were collected from the influent and effluent of each unit, as well as from the sludge of the UASB and from the microalgae biomass in the HRAP. Pathogens and indicators were quantified by quantitative polymerase chain reaction (qPCR) (for HAdV), qPCR with reverse transcription (RTqPCR) (for SARS-CoV-2), the double agar plaque assay (for coliphages), and the most probable number (MPN) method (for E. coli). The removal and overall reduction of HAdV and SARS-CoV-2 was greater than 1-log10. Almost 60% of remaining SARS-CoV-2 RNA and more than 70% of remaining HAdV DNA left the system in the sludge, demonstrating that both viruses may have affinity for solids. Coliphages showed a much lower affinity to solids, with only 3.7% leaving the system in the sludge. The system performed well in terms of the removal of organic matter and ammoniacal nitrogen, however tertiary treatment would be necessary to provide further pathogen reduction, if the effluent is to be reused in agriculture. To our knowledge, this is the first study that evaluated the reduction and partitioning of SARS-CoV-2 and HAdV through the complete cycle of a wastewater treatment system consisting of a UASB reactor followed by HRAPs.
Subject(s)
COVID-19 , Water Purification , Adenoviridae , Anaerobiosis , Bioreactors , Escherichia coli , Humans , RNA, Viral , SARS-CoV-2 , Sewage , Waste Disposal, FluidABSTRACT
Brazil has become one of the epicentres of the COVID-19 pandemic, with cases heavily concentrated in large cities. Testing data is extremely limited and unreliable, which restricts health authorities' ability to deal with the pandemic. Given the stark demographic, social and economic heterogeneities within Brazilian cities, it is important to identify hotspots so that the limited resources available can have the greatest impact. This study shows that decentralised monitoring of SARS-CoV-2 RNA in sewage can be used to assess the distribution of COVID-19 prevalence in the city. The methodology developed in this study allowed the identification of hotspots by comprehensively monitoring sewers distributed through Belo Horizonte, Brazil's third largest city. Our results show that the most vulnerable neighbourhoods in the city were the hardest hit by the pandemic, indicating that, for many Brazilians, the situation is much worse than reported by official figures.
Subject(s)
COVID-19 , Pandemics , SARS-CoV-2/isolation & purification , Sewage/virology , Brazil/epidemiology , COVID-19/epidemiology , Humans , Prevalence , RNA, ViralABSTRACT
Human enteric pathogens are a major global concern, as they are responsible for thousands of preventable deaths every year. New pathogens in wastewater are constantly emerging. For example, SARS-CoV-2 has been recently detected in domestic sewage and primary sludge. Knowledge about the reduction of viruses in wastewater treatment and their partitioning between the treated liquid effluent versus the sludge or biosolids is still very scarce, especially in countries with emerging economies and tropical climates. Upflow anaerobic sludge blanket (UASB) reactors are among the top three most commonly used technologies for the treatment of sewage in Latin America and the Caribbean, and their use has become increasingly common in many other low- and middle-income countries. High-rate algal ponds (HRAP) are regarded as a sustainable technology for the post-treatment of UASB effluent. This study evaluated the overall reduction and the liquid-solid partitioning of somatic coliphages, F-specific coliphages, and E. coli in a pilot-scale system comprised of a UASB reactor followed by HRAPs treating real wastewater. Average log removal for somatic and F-specific coliphages were 0.40 and 0.56 for the UASB reactor, and 1.15 and 1.70 for HRAPs, respectively. The overall removal of both phages in the system was 2.06-log. Removal of E. coli was consistently higher. The number of viruses leaving the system in the UASB solids and algal biomass was less than 10% of the number leaving in the clarified liquid effluent. The number of E. coli leaving the system in solids residuals was estimated to be approximately one order of magnitude higher than the number of E. coli leaving in the liquid effluent. Results from this study demonstrate the suitability of UASB-HRAP systems to reduce viral and bacterial indicators from domestic sewage and the importance of adequately treating sludge for pathogen reduction before they are used as biosolids.
Subject(s)
COVID-19 , Sewage , Anaerobiosis , Bioreactors , Caribbean Region , Escherichia coli , Humans , Ponds , SARS-CoV-2 , Waste Disposal, FluidABSTRACT
Heat treatment, or thermal disinfection, is one of the simplest disinfection methods, and is widely used in the water, sanitation, and food sectors, especially in low resource settings. Pathogen reductions achieved during heat treatment are influenced by a combination of temperature and exposure time. The objective of this paper was to construct updated time-temperature pathogen inactivation curves to define "safety zones" for the reduction of four pathogen groups (bacteria, viruses, protozoan (oo)cysts, and helminth eggs) during heat treatment in a variety of matrices. A systematic review and meta-analysis were conducted to determine the times needed to achieve specified levels of pathogen reduction at different temperatures. Web of Science was searched using a Boolean string to target studies of heat treatment and pasteurization systems that exposed pathogens in water, wastewater, biosolids, soil, or food matrices to temperatures between 20 °C and 95 °C. Data were extracted from tables or figures and regression was used to assess the relationship between time and temperature. Our findings indicate that the temperatures and times needed to achieve a 1-log10 reduction of all pathogen groups are likely higher and longer, respectively, than previously reported. The type of microorganism and the matrix significantly impact T90 values reported at different temperatures. At high temperatures, the time-temperature curves are controlled by thermally stable viruses such as hepatitis A virus. Data gaps include the lack of data on protozoa, and the lack of data on all pathogen groups at low temperatures, for long exposure times, and with high log10 reductions. The findings from this study can be used by engineers, food safety specialists for the planning and design of engineered water, sanitation, and food pasteurization and treatment systems.
Subject(s)
Pasteurization , Viruses , Disinfection , Food Microbiology , Hot Temperature , TemperatureABSTRACT
Waste stabilization ponds (WSPs) and their variants are one the most widely used wastewater treatment systems in the world. However, the scarcity of systematic performance data from full-scale plants has led to challenges associated with their design. The objective of this research was to assess the performance of 388 full-scale WSP systems located in Brazil, Ecuador, Bolivia and the United States through the statistical analysis of available monitoring data. Descriptive statistics were calculated of the influent and effluent concentrations and the removal efficiencies for 5-day biochemical oxygen demand (BOD5), total suspended solids (TSS), ammonia nitrogen (N-Ammonia), and either thermotolerant coliforms (TTC) or Escherichia coli for each WSP system, leading to a broad characterization of actual treatment performance. Compliance with different water quality and system performance goals was also evaluated. The treatment plants were subdivided into seven different categories, according to their units and flowsheet. The median influent concentrations of BOD5 and TSS were 431 mg/L and 397 mg/L and the effluent concentrations varied from technology to technology, but median values were 50 mg/L and 47 mg/L, respectively. The median removal efficiencies were 85% for BOD5 and 75% for TSS. The overall removals of TTC and E. coli were 1.74 and 1.63 log10 units, respectively. Future research is needed to better understand the influence of design, operational and environmental factors on WSP system performance.
Subject(s)
Ponds/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Purification/methods , Biological Oxygen Demand Analysis , Bolivia , Brazil , Ecuador , Escherichia coli/growth & development , Ponds/microbiology , United States , Wastewater/microbiology , Water QualityABSTRACT
Introduction: The high polymorphism of the HLA system allows its typification to be used as valuable tool in establishing association to various illnesses, immune and genetic profiles; it also provides a guide to identifying compatibility among donors and receptors of organs transplants. Objective: To establish HLA-A, HLA-B, and HLA.DRB1 allele, genotype and haplotype frequencies among patients treated at Clinica Colsanitas SA. Methods: 561 patients coming from different regions in Colombia, who were attended in 8 centers of the clinical laboratory of the Clinica Colsanitas in different cities of the country from January 2004 to August 2008, were included in this study. All were HLA-A,-B, and -DRB1 typified via SSP PCR. Allele, genotype and haplotype frequencies were estimated with STATA Software Version 9.0 and the GENEPOP genetic analysis package. Results: 19, 28, and 15 different alleles were identified for loci HLA-A,-B and -DRB1, respectively. Alleles found most frequently were A*24 (26.2%), A*02 (26%), B*35(22.7%), and DRB1*04 (24%). The most frequent genotypes were A*02,24 (14.2%), B*07,35 (5.5%), DRB1*01,04, and DRB1*04,04 (6.9%); while most the frequent haplotypes were HLA A*24, B*35 (9.2%), A*24, DRB1*04 (8.1%); B*35, DRB1*04 (7.8%), A*2 DRB1*04 (7.4%). Conclusion: The results obtained provide a useful reference framework for the population studied, allowing compatibility probability calculations to be performed for organ transplants.
Introducción: El alto polimorfismo del sistema HLA, hace que su tipificación sea una herramienta de gran valor al establecer asociación con diferentes enfermedades, patrones inmunológicos, antropogenéticos, así como para establecer probabilidades de encontrar donantes compatibles con receptores de diferentes tipos de trasplante de órganos. Objetivo: Establecer las frecuencias alélicas, genotípicas y haplotípicas en pacientes atendidos en la Clínica Colsanitas SA. Metodología: Se incluyeron un total de 561 pacientes atendidos en el Laboratorio Clínico de La Clínica Colsanitas SA, en 8 sedes en diferentes ciudades del Colombia, durante el período comprendido entre enero de 2004 a agosto de 2008. Se realizó tipificación de HLA -A,-B,-DRB1 por PCR SSP. Las frecuencias alélicas, genotípicas y haplotípicas fueron estimadas mediante el paquete estadístico Stata y el paquete de análisis genético Genepop. Resultados: Fue posible la identificación de 19, 28 y 15 alelos de los loci HLA A-B-DRB1 respectivamente, de los cuales los más frecuentes fueron A*24 (26.2%), A*02 (26%), B*35 (22.7%), DRB1*04 (24%). Los genotipos más frecuentes encontrados fueron A*02,24 (14.2%), B*07,35 (5.5%), DRB1*01,04 y DRB1*04,04 (6.9%). Los haplotipos más frecuentes fueron: HLA A*24, B*35 (9.2%), A*24, DRB1*04 (8.1%); B* 35, DRB1*04 (7.8%), A*2 DRB1*04 (7.4%). Conclusión: Los resultados obtenidos permiten tener referencia para aplicaciones en la población estudiada, así como para establecer probabilidades de compatibilidad en la creciente área de trasplante de órganos.
Subject(s)
Humans , Alleles , Genotype , Genes/genetics , Histocompatibility Testing , Immunity/geneticsABSTRACT
En el estudio de la respuesta inmune contra el cáncer, las proteínas de choque térmico (HSP) han sido implicadas en el control del crecimiento tumoral, al inducir una respuesta inmune en el huésped. Entre las familias de HSP que han presentado fuerte asociación con el cáncer se encuentra HSP70, la cual ha mostrado un comportamiento diferente en cada tipo de tumor. En carcinoma colorrectal y cáncer de seno, se correlacionó con baja diferenciación y pobre pronóstico. Sin embargo, alteraciones en la expresión de HSP70 en lesiones de cavidad oral han sido poco estudiadas.