Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 874: 162502, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36868274

ABSTRACT

Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.


Subject(s)
Caniformia , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/analysis , Plastics , Cetacea , Water Pollution , Environmental Monitoring , Waste Products/analysis , Asia, Southeastern
2.
Mar Pollut Bull ; 187: 114573, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36640493

ABSTRACT

Microplastics (MPs), <5 mm in size, are a concerning pollutant in bodies of water because they can be ingested by biological organisms, posing risks to humans and the environment. This study assessed the extent of MPs contamination in various fish species (Oreochromis niloticus, Arius manillensis, and Pterygoplichthys spp.) in selected sites along two major river systems in the Philippines - Pasig and Marikina Rivers. An optimized Raman microspectroscopy technique was used for imaging and identification of MPs using a mean laser spot size of about 1 µm, which is advantageous in the identification of fibers which have small diameters (<50 µm). It also allowed the simultaneous identification of MPs and their pigment additives, which in turn enabled the tracing of possible sources of these MPs. This is important because the fate and accumulation of MPs in rivers systems, as well as its toxicity is dependent on various factors including polymer type and surface chemistry. Majority of the MPs identified from all the fish species were composed of polypropylene and polyethylene in the form of fragments, which reflects both the widespread use of these polymers for packaging and their environmental fate as riverine plastic debris. Moreover, the detection of MPs in the fish species may affect the food chain and eventually pose health risks for humans. The study could provide guidance on waste and environmental water management in the surrounding region.


Subject(s)
Catfishes , Water Pollutants, Chemical , Humans , Animals , Microplastics , Plastics , Rivers/chemistry , Philippines , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fishes , Water
3.
Environ Geochem Health ; 44(10): 3655-3676, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34687407

ABSTRACT

Artisanal and small-scale mining activities are most evident among communities surrounding the Acupan River in Itogon Benguet. The mining activities include manual extraction of gold ores, use of improvised ball/rod mills and sluice boxes, and metallurgical processing such as cyanidation, carbon-in-pulp (CIP) and amalgamation. This study evaluates the influence of small-scale mining and the geology/mineralization of the Acupan Au-Ag-Te deposit to the water quality of the Acupan River and to the possible human exposures to Hg within the small-scale mining community. Different water quality parameters were monitored along selected sites along the Acupan River for a year and the results showed that the low average values of dissolve oxygen (DO) (2.54-4.53 mg L-1) and the relatively high average values of pH (8.84-10.10), sulfate (300.00-1133.33 mg L-1), nitrate (11.33-134.67 mg L-1), arsenic (As) (0.227-0.574 mg L-1) and mercury (Hg) (0.004-0.054 mg L-1) have exceeded the acceptable criteria limit of the Department of Environment and Natural Resources for Class C waters. The exceeded values are noted to occur in areas where extensive small-scale mining activities are being done and have affected as well the downstream areas. To test possible human contamination in the use of Hg, hair samples from 56 volunteers were analyzed for total Hg (T-Hg) following standard protocols. The T-Hg concentrations in hair samples are mostly inorganic and are determined in various parameters such as sex, geographic location, occupation, age, fish consumption and localization in hair. Though not significantly different, higher Hg values are noted in males (1.280 ± 0.446 ng mg-1) than among females (0.651 ± 0.163 ng mg-1) as well as those with ages 41-50 years (3.130 ± 2.330 ng mg-1) as compared to other age groups. The higher amounts of inorganic Hg in human hairs could be attributed to the discrete yet prevalent use of amalgamation. The findings of this study emphasize the need for better regulations of the small-scale mining activities and for stricter implementation of the total ban on the use of Hg in ore processing to ensure better water quality of Acupan River as well as the health and safety of the communities surrounding the river.


Subject(s)
Arsenic , Mercury , Nefopam , Water Pollutants, Chemical , Adult , Animals , Carbon , Environmental Monitoring , Female , Gold , Humans , Male , Mercury/analysis , Middle Aged , Mining , Nitrates , Oxygen , Philippines , Sulfates , Water Pollutants, Chemical/analysis , Water Quality
4.
Environ Monit Assess ; 189(4): 145, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28265835

ABSTRACT

Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Plants/chemistry , Soil Pollutants/analysis , Cities , Philippines , Soil/chemistry , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...