Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 652(Pt B): 1308-1324, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659303

ABSTRACT

HYPOTHESIS: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e. caffeic acid (CA), chlorogenic acid (CGA) and gallic acid (GA) under mild aerial oxidative conditions were prepared. EXPERIMENTS: The hydrogels were subjected to chemical assays, ATR FT-IR and EPR spectroscopy, rheological and morphological SEM analysis. Mechanical tests were carried out on hydrogels prepared by inclusion of agarose. Biological tests included evaluation of the antibacterial and wound healing activity, and hemocompatibility. FINDINGS: The decrease of free NH2 and SH groups of SPI, the EPR features, the good cohesive strength and excellent underwater resistance (15 days for SPI/GA) under conditions relevant to their use as surgical glues indicated an efficient interaction of the polyphenols with the protein in the hydrogels. The polyphenols greatly also improved the mechanical properties of the SPI/ agarose/polyphenols hydrogels. These latter proved biocompatible, hemocompatible, not harmful to skin, displayed durable adhesiveness and good water-vapour permeability. Excellent antibacterial properties and in some cases (SPI/CGA) a favourable wound healing activity on dermal fibroblasts was obtained.

2.
Int J Mol Sci ; 24(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36982468

ABSTRACT

The need to protect human and environmental health and avoid the widespread use of substances obtained from nonrenewable sources is steering research toward the discovery and development of new molecules characterized by high biocompatibility and biodegradability. Due to their very widespread use, a class of substances for which this need is particularly urgent is that of surfactants. In this respect, an attractive and promising alternative to commonly used synthetic surfactants is represented by so-called biosurfactants, amphiphiles naturally derived from microorganisms. One of the best-known families of biosurfactants is that of rhamnolipids, which are glycolipids with a headgroup formed by one or two rhamnose units. Great scientific and technological effort has been devoted to optimization of their production processes, as well as their physicochemical characterization. However, a conclusive structure-function relationship is far from being defined. In this review, we aim to move a step forward in this direction, by presenting a comprehensive and unified discussion of physicochemical properties of rhamnolipids as a function of solution conditions and rhamnolipid structure. We also discuss still unresolved issues that deserve further investigation in the future, to allow the replacement of conventional surfactants with rhamnolipids.


Subject(s)
Glycolipids , Surface-Active Agents , Humans , Glycolipids/chemistry , Surface-Active Agents/chemistry , Technology , Water
3.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36290583

ABSTRACT

Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19-27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.

4.
Nanomaterials (Basel) ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513926

ABSTRACT

Identification of strategies to prolong emulsion kinetic stability is a fundamental challenge for many scientists and technologists. We investigated the relationship between the emulsion stability and the surfactant supramolecular organization at the oil-water interface. The pseudo-phase diagrams of emulsions formed by water and, alternatively, a linear or a branched oil, stabilized by mixtures of two sugar-based surfactants, Span80 and Tween80, are presented. The surfactant ordering and dynamics were analyzed by electron paramagnetic resonance (EPR) spectroscopy. In Oil-in-Water (O/W) emulsions, which are stable for more than four days, disordered surfactant tails formed a compact and viscous layer. In Water-in-Oil (W/O) emulsions, whose stability is much lower, surfactants formed an ordered layer of extended tails pointing toward the continuous apolar medium. If linear oil was used, a narrow range of surfactant mixture composition existed, in which emulsions did not demix in the whole range of water/oil ratio, thus making it possible to study the phase inversion from O/W to W/O structures. While conductometry showed an abrupt inversion occurring at a well-defined water/oil ratio, the surfactant layer microstructure changed gradually between the two limiting situations. Overall, our results demonstrate the interconnection between the emulsion stability and the surfactant layer microstructuring, thus indicating directions for their rational design.

5.
J Food Sci ; 85(10): 3467-3477, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32885423

ABSTRACT

The research aimed to generate an early warning system highlighting in real-time bacterial contamination of meat matrices and providing information which could support companies in accepting or rejecting batches. Current microorganisms' detection methods rely on techniques (plate counting), which provide retrospective values for microbial contamination. The purpose of this research was to evaluate the ability of the headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS) methodologies to detect volatile organic carbons (VOCs), which may be associated to a peculiar microbiological contamination of food. The disposal of fast headspace gas chromatography-mass spectrometry (HS-SPME-GC/MS) able to accurately and rapidly (30 min per sample) detect pathogens in raw meat could replace the traditional and time-consuming (3 to 4 days) standardized microbiological analysis required by regulations. Experiments focused on qualitative and quantitative evaluations of VOCs produced by Salmonella Typhimurium, Campylobacter jejuni, and Staphylococcus aureus in different types of raw meat (beef, pork, chicken). HS-SPME-GC/MS allowed to use smaller sample volumes compared to traditional methods with no sample processing and the potentiality for its application on various food matrices for the detection of a wide variety of pathogens. Data analysis showed the identification of unique VOCs' profiles being possible markers of meat contamination due to their association to specific pathogens. The identification of VOCs markers in association to selected bacterial pathogens and their metabolites could support the rapid determination of specific meat samples contamination. Further research is required to outline-specific metabolic profiles for each microorganism responsible of meat contamination and prevent false positives.


Subject(s)
Bacteria/metabolism , Food Contamination/analysis , Meat/microbiology , Volatile Organic Compounds/chemistry , Animals , Bacteria/chemistry , Biomarkers/analysis , Cattle , Chickens , Gas Chromatography-Mass Spectrometry/methods , Meat/analysis , Metabolome , Metabolomics , Solid Phase Microextraction/methods , Swine , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...