Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 110(3): 499-515, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36724785

ABSTRACT

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.


Subject(s)
Microcephaly , Movement Disorders , Neurodevelopmental Disorders , Humans , Intracellular Signaling Peptides and Proteins , HEK293 Cells , TOR Serine-Threonine Kinases
2.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31527314

ABSTRACT

Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called MSS51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, ß-oxidation, glycolysis, and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51-KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51-KO mice showed an increased oxygen consumption rate compared with WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid ß-oxidation were enhanced in skeletal muscle of Mss51-KO mice compared with that of WT mice. We found that mice lacking Mss51 and challenged with a high-fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid ß-oxidation. These findings demonstrate that MSS51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Mitochondrial Proteins/deficiency , Muscle Fibers, Skeletal/metabolism , Obesity/metabolism , Transcription Factors/deficiency , Animals , CRISPR-Cas Systems/genetics , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids/metabolism , Female , Humans , Insulin , Insulin Resistance/genetics , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Muscle Fibers, Skeletal/cytology , Obesity/etiology , Obesity/genetics , Oxidation-Reduction , Oxidative Phosphorylation , Oxygen Consumption , Transcription Factors/genetics , Weight Gain , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...