Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Br J Haematol ; 204(5): 1660-1671, 2024 May.
Article in English | MEDLINE | ID: mdl-38419589

ABSTRACT

The supply of blood components and products in sufficient quantities is key to any effective health care system. This report describes the challenges faced by the English blood service, NHS Blood and Transplant (NHSBT), towards the end of the COVID-19 pandemic, which in October 2022 led to an Amber Alert being declared to hospitals indicating an impending blood shortage. The impact on the hospital transfusion services and clinical users is explained. The actions taken by NHSBT to mitigate the blood supply challenges and ensure equity of transfusion support for hospitals in England including revisions to the national blood shortage plans are described. This report focuses on the collaboration and communication between NHSBT, NHS England (NHSE), Department of Health and Social Care (DHSC), National Blood Transfusion Committee (NBTC), National Transfusion Laboratory Managers Advisory Group for NBTC (NTLM), National Transfusion Practitioners Network, the medical Royal Colleges and clinical colleagues across the NHS.


Subject(s)
Blood Donors , Blood Transfusion , COVID-19 , SARS-CoV-2 , Humans , England , COVID-19/epidemiology , Blood Transfusion/statistics & numerical data , Blood Donors/supply & distribution , Blood Banks/supply & distribution , State Medicine/organization & administration , Pandemics
2.
Cochrane Database Syst Rev ; 1: CD013295, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38226724

ABSTRACT

BACKGROUND: Hip and knee replacement surgery is a well-established means of improving quality of life, but is associated with a significant risk of bleeding. One-third of people are estimated to be anaemic before hip or knee replacement surgery; coupled with the blood lost during surgery, up to 90% of individuals are anaemic postoperatively. As a result, people undergoing orthopaedic surgery receive 3.9% of all packed red blood cell transfusions in the UK. Bleeding and the need for allogeneic blood transfusions has been shown to increase the risk of surgical site infection and mortality, and is associated with an increased duration of hospital stay and costs associated with surgery. Reducing blood loss during surgery may reduce the risk of allogeneic blood transfusion, reduce costs and improve outcomes following surgery. Several pharmacological interventions are available and currently employed as part of routine clinical care. OBJECTIVES: To determine the relative efficacy of pharmacological interventions for preventing blood loss in elective primary or revision hip or knee replacement, and to identify optimal administration of interventions regarding timing, dose and route, using network meta-analysis (NMA) methodology. SEARCH METHODS: We searched the following databases for randomised controlled trials (RCTs) and systematic reviews, from inception to 18 October 2022: CENTRAL (the Cochrane Library), MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCOhost), Transfusion Evidence Library (Evidentia), ClinicalTrials.gov and WHO International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA: We included RCTs of people undergoing elective hip or knee surgery only. We excluded non-elective or emergency procedures, and studies published since 2010 that had not been prospectively registered (Cochrane Injuries policy). There were no restrictions on gender, ethnicity or age (adults only). We excluded studies that used standard of care as the comparator. Eligible interventions included: antifibrinolytics (tranexamic acid (TXA), aprotinin, epsilon-aminocaproic acid (EACA)), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants and non-fibrin sealants. DATA COLLECTION AND ANALYSIS: We performed the review according to standard Cochrane methodology. Two authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using CINeMA. We presented direct (pairwise) results using RevMan Web and performed the NMA using BUGSnet. We were interested in the following primary outcomes: need for allogenic blood transfusion (up to 30 days) and all-cause mortality (deaths occurring up to 30 days after the operation), and the following secondary outcomes: mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), length of hospital stay and adverse events related to the intervention received. MAIN RESULTS: We included a total of 102 studies. Twelve studies did not report the number of included participants; the other 90 studies included 8418 participants. Trials included more women (64%) than men (36%). In the NMA for allogeneic blood transfusion, we included 47 studies (4398 participants). Most studies examined TXA (58 arms, 56%). We found that TXA, given intra-articularly and orally at a total dose of greater than 3 g pre-incision, intraoperatively and postoperatively, ranked the highest, with an anticipated absolute effect of 147 fewer blood transfusions per 1000 people (150 fewer to 104 fewer) (53% chance of ranking 1st) within the NMA (risk ratio (RR) 0.02, 95% credible interval (CrI) 0 to 0.31; moderate-certainty evidence). This was followed by TXA given orally at a total dose of 3 g pre-incision and postoperatively (RR 0.06, 95% CrI 0.00 to 1.34; low-certainty evidence) and TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively (RR 0.10, 95% CrI 0.02 to 0.55; low-certainty evidence). Aprotinin (RR 0.59, 95% CrI 0.36 to 0.96; low-certainty evidence), topical fibrin (RR 0.86, CrI 0.25 to 2.93; very low-certainty evidence) and EACA (RR 0.60, 95% CrI 0.29 to 1.27; very low-certainty evidence) were not shown to be as effective compared with TXA at reducing the risk of blood transfusion. We were unable to perform an NMA for our primary outcome all-cause mortality within 30 days of surgery due to the large number of studies with zero events, or because the outcome was not reported. In the NMA for deep vein thrombosis (DVT), we included 19 studies (2395 participants). Most studies examined TXA (27 arms, 64%). No studies assessed desmopressin, EACA or topical fibrin. We found that TXA given intravenously and orally at a total dose of greater than 3 g intraoperatively and postoperatively ranked the highest, with an anticipated absolute effect of 67 fewer DVTs per 1000 people (67 fewer to 34 more) (26% chance of ranking first) within the NMA (RR 0.16, 95% CrI 0.02 to 1.43; low-certainty evidence). This was followed by TXA given intravenously and intra-articularly at a total dose of 2 g pre-incision and intraoperatively (RR 0.21, 95% CrI 0.00 to 9.12; low-certainty evidence) and TXA given intravenously and intra-articularly, total dose greater than 3 g pre-incision, intraoperatively and postoperatively (RR 0.13, 95% CrI 0.01 to 3.11; low-certainty evidence). Aprotinin was not shown to be as effective compared with TXA (RR 0.67, 95% CrI 0.28 to 1.62; very low-certainty evidence). We were unable to perform an NMA for our secondary outcomes pulmonary embolism, myocardial infarction and CVA (stroke) within 30 days, mean number of transfusion episodes per person (up to 30 days), re-operation due to bleeding (within seven days), or length of hospital stay, due to the large number of studies with zero events, or because the outcome was not reported by enough studies to build a network. There are 30 ongoing trials planning to recruit 3776 participants, the majority examining TXA (26 trials). AUTHORS' CONCLUSIONS: We found that of all the interventions studied, TXA is probably the most effective intervention for preventing bleeding in people undergoing hip or knee replacement surgery. Aprotinin and EACA may not be as effective as TXA at preventing the need for allogeneic blood transfusion. We were not able to draw strong conclusions on the optimal dose, route and timing of administration of TXA. We found that TXA given at higher doses tended to rank higher in the treatment hierarchy, and we also found that it may be more beneficial to use a mixed route of administration (oral and intra-articular, oral and intravenous, or intravenous and intra-articular). Oral administration may be as effective as intravenous administration of TXA. We found little to no evidence of harm associated with higher doses of tranexamic acid in the risk of DVT. However, we are not able to definitively draw these conclusions based on the trials included within this review.


Subject(s)
Orthopedic Procedures , Stroke , Tranexamic Acid , Male , Female , Adult , Humans , Tranexamic Acid/therapeutic use , Aprotinin/therapeutic use , Deamino Arginine Vasopressin , Network Meta-Analysis , Hemorrhage/etiology , Aminocaproic Acid/therapeutic use , Stroke/drug therapy , Orthopedic Procedures/adverse effects , Fibrin
3.
Transfusion ; 63(12): 2225-2233, 2023 12.
Article in English | MEDLINE | ID: mdl-37921017

ABSTRACT

BACKGROUND: Management of major hemorrhage frequently requires massive transfusion (MT) support, which should be delivered effectively and efficiently. We have previously developed a clinical decision support system (CDS) for MT using a multicenter multidisciplinary user-centered design study. Here we examine its impact when administering a MT. STUDY DESIGN AND METHODS: We conducted a randomized simulation trial to compare a CDS for MT with a paper-based MT protocol for the management of simulated hemorrhage. A total of 44 specialist physicians, trainees (residents), and nurses were recruited across critical care to participate in two 20-min simulated bleeding scenarios. The primary outcome was the decision velocity (correct decisions per hour) and overall task completion. Secondary outcomes included cognitive workload and System Usability Scale (SUS). RESULTS: There was a statistically significant increase in decision velocity for CDS-based management (mean 8.5 decisions per hour) compared to paper based (mean 6.9 decisions per hour; p .003, 95% CI 0.6-2.6). There was no significant difference in the overall task completion using CDS-based management (mean 13.3) compared to paper-based (mean 13.2; p .92, 95% CI -1.2-1.3). Cognitive workload was statistically significantly lower using the CDS compared to the paper protocol (mean 57.1 vs. mean 64.5, p .005, 95% CI 2.4-12.5). CDS usability was assessed as a SUS score of 82.5 (IQR 75-87.5). DISCUSSION: Compared to paper-based management, CDS-based MT supports more time-efficient decision-making by users with limited CDS training and achieves similar overall task completion while reducing cognitive load. Clinical implementation will determine whether the benefits demonstrated translate to improved patient outcomes.


Subject(s)
Decision Support Systems, Clinical , Humans , Computer Simulation , Hemorrhage , Multicenter Studies as Topic , Workload
4.
Lancet Microbe ; 4(11): e883-e892, 2023 11.
Article in English | MEDLINE | ID: mdl-37924835

ABSTRACT

BACKGROUND: Randomised controlled trials of passive antibodies as treatment and prophylaxis for COVID-19 have reported variable efficacy. However, the determinants of efficacy have not been identified. We aimed to assess how the dose and timing of administration affect treatment outcome. METHODS: In this systematic review and meta-analysis, we extracted data from published studies of passive antibody treatment from Jan 1, 2019, to Jan 31, 2023, that were identified by searching multiple databases, including MEDLINE, PubMed, and ClinicalTrials.gov. We included only randomised controlled trials of passive antibody administration for the prevention or treatment of COVID-19. To compare administered antibody dose between different treatments, we used data on in-vitro neutralisation titres to normalise dose by antibody potency. We used mixed-effects regression and model fitting to analyse the relationship between timing, dose and efficacy. FINDINGS: We found 58 randomised controlled trials that investigated passive antibody therapies for the treatment or prevention of COVID-19. Earlier clinical stage at treatment initiation was highly predictive of the efficacy of both monoclonal antibodies (p<0·0001) and convalescent plasma therapy (p=0·030) in preventing progression to subsequent stages, with either prophylaxis or treatment in outpatients showing the greatest effects. For the treatment of outpatients with COVID-19, we found a significant association between the dose administered and efficacy in preventing hospitalisation (relative risk 0·77; p<0·0001). Using this relationship, we predicted that no approved monoclonal antibody was expected to provide more than 30% efficacy against some omicron (B.1.1.529) subvariants, such as BQ.1.1. INTERPRETATION: Early administration before hospitalisation and sufficient doses of passive antibody therapy are crucial to achieving high efficacy in preventing clinical progression. The relationship between dose and efficacy provides a framework for the rational assessment of future passive antibody prophylaxis and treatment strategies for COVID-19. FUNDING: The Australian Government Department of Health, Medical Research Future Fund, National Health and Medical Research Council, the University of New South Wales, Monash University, Haematology Society of Australia and New Zealand, Leukaemia Foundation, and the Victorian Government.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Australia , Treatment Outcome , Antibodies, Monoclonal
5.
N Engl J Med ; 389(25): 2341-2354, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37888913

ABSTRACT

BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (>99% posterior probability that the odds ratio was >1) and futility (>95% posterior probability that the odds ratio was <1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
COVID-19 , Critical Illness , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Simvastatin , Humans , Bayes Theorem , COVID-19/mortality , COVID-19/therapy , COVID-19 Drug Treatment , Critical Illness/mortality , Critical Illness/therapy , Hospital Mortality , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Simvastatin/therapeutic use , Treatment Outcome
6.
JAMA ; 330(18): 1745-1759, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37877585

ABSTRACT

Importance: The efficacy of vitamin C for hospitalized patients with COVID-19 is uncertain. Objective: To determine whether vitamin C improves outcomes for patients with COVID-19. Design, Setting, and Participants: Two prospectively harmonized randomized clinical trials enrolled critically ill patients receiving organ support in intensive care units (90 sites) and patients who were not critically ill (40 sites) between July 23, 2020, and July 15, 2022, on 4 continents. Interventions: Patients were randomized to receive vitamin C administered intravenously or control (placebo or no vitamin C) every 6 hours for 96 hours (maximum of 16 doses). Main Outcomes and Measures: The primary outcome was a composite of organ support-free days defined as days alive and free of respiratory and cardiovascular organ support in the intensive care unit up to day 21 and survival to hospital discharge. Values ranged from -1 organ support-free days for patients experiencing in-hospital death to 22 organ support-free days for those who survived without needing organ support. The primary analysis used a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented efficacy (improved survival, more organ support-free days, or both), an OR less than 1 represented harm, and an OR less than 1.2 represented futility. Results: Enrollment was terminated after statistical triggers for harm and futility were met. The trials had primary outcome data for 1568 critically ill patients (1037 in the vitamin C group and 531 in the control group; median age, 60 years [IQR, 50-70 years]; 35.9% were female) and 1022 patients who were not critically ill (456 in the vitamin C group and 566 in the control group; median age, 62 years [IQR, 51-72 years]; 39.6% were female). Among critically ill patients, the median number of organ support-free days was 7 (IQR, -1 to 17 days) for the vitamin C group vs 10 (IQR, -1 to 17 days) for the control group (adjusted proportional OR, 0.88 [95% credible interval {CrI}, 0.73 to 1.06]) and the posterior probabilities were 8.6% (efficacy), 91.4% (harm), and 99.9% (futility). Among patients who were not critically ill, the median number of organ support-free days was 22 (IQR, 18 to 22 days) for the vitamin C group vs 22 (IQR, 21 to 22 days) for the control group (adjusted proportional OR, 0.80 [95% CrI, 0.60 to 1.01]) and the posterior probabilities were 2.9% (efficacy), 97.1% (harm), and greater than 99.9% (futility). Among critically ill patients, survival to hospital discharge was 61.9% (642/1037) for the vitamin C group vs 64.6% (343/531) for the control group (adjusted OR, 0.92 [95% CrI, 0.73 to 1.17]) and the posterior probability was 24.0% for efficacy. Among patients who were not critically ill, survival to hospital discharge was 85.1% (388/456) for the vitamin C group vs 86.6% (490/566) for the control group (adjusted OR, 0.86 [95% CrI, 0.61 to 1.17]) and the posterior probability was 17.8% for efficacy. Conclusions and Relevance: In hospitalized patients with COVID-19, vitamin C had low probability of improving the primary composite outcome of organ support-free days and hospital survival. Trial Registration: ClinicalTrials.gov Identifiers: NCT04401150 (LOVIT-COVID) and NCT02735707 (REMAP-CAP).


Subject(s)
COVID-19 , Sepsis , Humans , Female , Middle Aged , Male , Ascorbic Acid/therapeutic use , Critical Illness/therapy , Critical Illness/mortality , Hospital Mortality , Bayes Theorem , Randomized Controlled Trials as Topic , Vitamins/therapeutic use , Sepsis/drug therapy
7.
Cochrane Database Syst Rev ; 8: CD012380, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37539955

ABSTRACT

BACKGROUND: Sickle cell disease (SCD), one of the commonest severe monogenic disorders, is caused by the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, with increased prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. This is an update of a review first published in 2017. OBJECTIVES: To assess the effectiveness of any intervention for preventing or reducing kidney complications or chronic kidney disease in people with sickle cell disease. Possible interventions include red blood cell transfusions, hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination. SEARCH METHODS: We searched for relevant trials in the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, CENTRAL, MEDLINE, Embase, seven other databases, and two other trials registers. SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing interventions to prevent or reduce kidney complications or CKD in people with SCD. We applied no restrictions related to outcomes examined, language, or publication status. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias, and assessed the certainty of the evidence (GRADE). MAIN RESULTS: We included three RCTs with 385 participants. We rated the certainty of the evidence as low to very low across different outcomes according to GRADE methodology, downgrading for risk of bias concerns, indirectness, and imprecision. Hydroxyurea versus placebo One RCT published in 2011 compared hydroxyurea to placebo in 193 children aged nine to 18 months. We are unsure if hydroxyurea compared to placebo reduces or prevents progression of kidney disease assessed by change in glomerular filtration rate (mean difference (MD) 0.58 mL/min /1.73 m2, 95% confidence interval (CI) -14.60 to 15.76; 142 participants; very low certainty). Hydroxyurea compared to placebo may improve the ability to concentrate urine (MD 42.23 mOsm/kg, 95% CI 12.14 to 72.32; 178 participants; low certainty), and may make little or no difference to SCD-related serious adverse events, including acute chest syndrome (risk ratio (RR) 0.39, 99% CI 0.13 to 1.16; 193 participants; low certainty), painful crisis (RR 0.68, 99% CI 0.45 to 1.02; 193 participants; low certainty); and hospitalisations (RR 0.83, 99% CI 0.68 to 1.01; 193 participants; low certainty). No deaths occurred in either trial arm and the RCT did not report quality of life. Angiotensin-converting enzyme inhibitors versus placebo One RCT published in 1998 compared an ACEI (captopril) to placebo in 22 adults with normal blood pressure and microalbuminuria. We are unsure if captopril compared to placebo reduces proteinuria (MD -49.00 mg/day, 95% CI -124.10 to 26.10; 22 participants; very low certainty). We are unsure if captopril reduces or prevents kidney disease as measured by creatinine clearance; the trial authors stated that creatinine clearance remained constant over six months in both groups, but provided no comparative data (very low certainty). The RCT did not report serious adverse events, all-cause mortality, or quality of life. Angiotensin-converting enzyme inhibitors versus vitamin C One RCT published in 2020 compared an ACEI (lisinopril) with vitamin C in 170 children aged one to 18 years with normal blood pressure and microalbuminuria. It reported no data we could analyse. We are unsure if lisinopril compared to vitamin C reduces proteinuria in this population: the large drop in microalbuminuria in both arms of the trial after only one month on treatment may have been due to an overestimation of microalbuminuria at baseline rather than a true effect. The RCT did not report serious adverse events, all-cause mortality, or quality of life. AUTHORS' CONCLUSIONS: We are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. We are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. We are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria. No RCTs assessed red blood cell transfusions or any combined interventions to prevent or reduce kidney complications. Due to lack of evidence, we cannot comment on the management of children aged over 18 months or adults with any known genotype of SCD. We have identified a lack of adequately designed and powered studies, although we found four ongoing trials since the last version of this review. Only one ongoing trial addresses renal function as a primary outcome in the short term, but such interventions have long-term effects. Trials of hydroxyurea, ACEIs or red blood cell transfusion in older children and adults are urgently needed to determine any effect on prevention or reduction of kidney complications in people with SCD.


Subject(s)
Acute Chest Syndrome , Anemia, Sickle Cell , Kidney Failure, Chronic , Child , Adult , Humans , Adolescent , Hydroxyurea/therapeutic use , Antisickling Agents/therapeutic use , Acute Chest Syndrome/chemically induced , Acute Chest Syndrome/complications , Acute Chest Syndrome/drug therapy , Captopril/therapeutic use , Lisinopril/therapeutic use , Creatinine , Anemia, Sickle Cell/complications , Proteinuria/etiology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Ascorbic Acid/therapeutic use
8.
Cochrane Database Syst Rev ; 7: CD015078, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37489818

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) can cause thrombotic events that lead to severe complications or death. Antiplatelet agents, such as acetylsalicylic acid, have been shown to effectively reduce thrombotic events in other diseases: they could influence the course of COVID-19 in general. OBJECTIVES: To assess the efficacy and safety of antiplatelets given with standard care compared to no treatment or standard care (with/without placebo) for adults with COVID-19. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which comprises MEDLINE (PubMed), Embase, ClinicalTrials.gov, WHO ICTRP, medRxiv, CENTRAL), Web of Science, WHO COVID-19 Global literature on coronavirus disease and the Epistemonikos COVID-19 L*OVE Platform to identify completed and ongoing studies without language restrictions to December 2022. SELECTION CRITERIA: We followed standard Cochrane methodology. We included randomised controlled trials (RCTs) evaluating antiplatelet agents for the treatment of COVID-19 in adults with COVID-19, irrespective of disease severity, gender or ethnicity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane risk of bias tool (RoB 2) for RCTs. We rated the certainty of evidence using the GRADE approach for the outcomes. MAIN RESULTS: Antiplatelets plus standard care versus standard care (with/without placebo) Adults with a confirmed diagnosis of moderate to severe COVID-19 We included four studies (17,541 participants) that recruited hospitalised people with a confirmed diagnosis of moderate to severe COVID-19. A total of 8964 participants were analysed in the antiplatelet arm (either with cyclooxygenase inhibitors or P2Y12 inhibitors) and 8577 participants in the control arm. Most people were older than 50 years and had comorbidities such as hypertension, lung disease or diabetes. The studies were conducted in high- to lower middle-income countries prior to wide-scale vaccination programmes. Antiplatelets compared to standard care: - probably result in little to no difference in 28-day mortality (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.85 to 1.05; 3 studies, 17,249 participants; moderate-certainty evidence). In absolute terms, this means that for every 177 deaths per 1000 people not receiving antiplatelets, there were 168 deaths per 1000 people who did receive the intervention (95% CI 151 to 186 per 1000 people); - probably result in little to no difference in worsening (new need for invasive mechanical ventilation or death up to day 28) (RR 0.95, 95% CI 0.90 to 1.01; 2 studies, 15,266 participants; moderate-certainty evidence); - probably result in little to no difference in improvement (participants discharged alive up to day 28) (RR 1.00, 95% CI 0.96 to 1.04; 2 studies, 15,454 participants; moderate-certainty evidence); - probably result in a slight reduction of thrombotic events at longest follow-up (RR 0.90, 95% CI 0.80 to 1.02; 4 studies, 17,518 participants; moderate-certainty evidence); - may result in a slight increase in serious adverse events at longest follow-up (Peto odds ratio (OR) 1.57, 95% CI 0.48 to 5.14; 1 study, 1815 participants; low-certainty evidence), but non-serious adverse events during study treatment were not reported; - probably increase the occurrence of major bleeding events at longest follow-up (Peto OR 1.68, 95% CI 1.29 to 2.19; 4 studies, 17,527 participants; moderate-certainty evidence). Adults with a confirmed diagnosis of asymptomatic SARS-CoV-2 infection or mild COVID-19 We included two RCTs allocating participants, of whom 4209 had confirmed mild COVID-19 and were not hospitalised. A total of 2109 participants were analysed in the antiplatelet arm (treated with acetylsalicylic acid) and 2100 participants in the control arm. No study included people with asymptomatic SARS-CoV-2 infection. Antiplatelets compared to standard care: - may result in little to no difference in all-cause mortality at day 45 (Peto OR 1.00, 95% CI 0.45 to 2.22; 2 studies, 4209 participants; low-certainty evidence); - may slightly decrease the incidence of new thrombotic events up to day 45 (Peto OR 0.37, 95% CI 0.09 to 1.46; 2 studies, 4209 participants; low-certainty evidence); - may make little or no difference to the incidence of serious adverse events up to day 45 (Peto OR 1.00, 95% CI 0.60 to 1.64; 1 study, 3881 participants; low-certainty evidence), but non-serious adverse events were not reported. The evidence is very uncertain about the effect of antiplatelets on the following outcomes (compared to standard care plus placebo): - admission to hospital or death up to day 45 (Peto OR 0.79, 95% CI 0.57 to 1.10; 2 studies, 4209 participants; very low-certainty evidence); - major bleeding events up to longest follow-up (no event occurred in 328 participants; very low-certainty evidence). Quality of life and adverse events during study treatment were not reported. AUTHORS' CONCLUSIONS: In people with confirmed or suspected COVID-19 and moderate to severe disease, we found moderate-certainty evidence that antiplatelets probably result in little to no difference in 28-day mortality, clinical worsening or improvement, but probably result in a slight reduction in thrombotic events. They probably increase the occurrence of major bleeding events. Low-certainty evidence suggests that antiplatelets may result in a slight increase in serious adverse events. In people with confirmed COVID-19 and mild symptoms, we found low-certainty evidence that antiplatelets may result in little to no difference in 45-day mortality and serious adverse events, and may slightly reduce thrombotic events. The effects on the combined outcome admission to hospital or death up to day 45 and major bleeding events are very uncertain. Quality of life was not reported. Included studies were conducted in high- to lower middle-income settings using antiplatelets prior to vaccination roll-outs. We identified a lack of evidence concerning quality of life assessments, adverse events and people with asymptomatic infection. The 14 ongoing and three completed, unpublished RCTs that we identified in trial registries address similar settings and research questions as in the current body of evidence. We expect to incorporate the findings of these studies in future versions of this review.


Subject(s)
COVID-19 , Platelet Aggregation Inhibitors , Adult , Humans , SARS-CoV-2 , Aspirin , Asymptomatic Infections
9.
Cochrane Database Syst Rev ; 6: CD013737, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37294864

ABSTRACT

BACKGROUND: Following hip fracture, people sustain an acute blood loss caused by the injury and subsequent surgery. Because the majority of hip fractures occur in older adults, blood loss may be compounded by pre-existing anaemia. Allogenic blood transfusions (ABT) may be given before, during, and after surgery to correct chronic anaemia or acute blood loss. However, there is uncertainty about the benefit-risk ratio for ABT. This is a potentially scarce resource, with availability of blood products sometimes uncertain. Other strategies from Patient Blood Management may prevent or minimise blood loss and avoid administration of ABT. OBJECTIVES: To summarise the evidence from Cochrane Reviews and other systematic reviews of randomised or quasi-randomised trials evaluating the effects of pharmacological and non-pharmacological interventions, administered perioperatively, on reducing blood loss, anaemia, and the need for ABT in adults undergoing hip fracture surgery. METHODS: In January 2022, we searched the Cochrane Library, MEDLINE, Embase, and five other databases for systematic reviews of randomised controlled trials (RCTs) of interventions given to prevent or minimise blood loss, treat the effects of anaemia, and reduce the need for ABT, in adults undergoing hip fracture surgery. We searched for pharmacological interventions (fibrinogen, factor VIIa and factor XIII, desmopressin, antifibrinolytics, fibrin and non-fibrin sealants and glue, agents to reverse the effects of anticoagulants, erythropoiesis agents, iron, vitamin B12, and folate replacement therapy) and non-pharmacological interventions (surgical approaches to reduce or manage blood loss, intraoperative cell salvage and autologous blood transfusion, temperature management, and oxygen therapy). We used Cochrane methodology, and assessed the methodological quality of included reviews using AMSTAR 2. We assessed the degree of overlap of RCTs between reviews. Because overlap was very high, we used a hierarchical approach to select reviews from which to report data; we compared the findings of selected reviews with findings from the other reviews. Outcomes were: number of people requiring ABT, volume of transfused blood (measured as units of packed red blood cells (PRC)), postoperative delirium, adverse events, activities of daily living (ADL), health-related quality of life (HRQoL), and mortality. MAIN RESULTS: We found 26 systematic reviews including 36 RCTs (3923 participants), which only evaluated tranexamic acid and iron. We found no reviews of other pharmacological interventions or any non-pharmacological interventions. Tranexamic acid (17 reviews, 29 eligible RCTs) We selected reviews with the most recent search date, and which included data for the most outcomes. The methodological quality of these reviews was low. However, the findings were largely consistent across reviews. One review included 24 RCTs, with participants who had internal fixation or arthroplasty for different types of hip fracture. Tranexamic acid was given intravenously or topically during the perioperative period. In this review, based on a control group risk of 451 people per 1000, 194 fewer people per 1000 probably require ABT after receiving tranexamic acid (risk ratio (RR) 0.56, 95% confidence interval (CI) 0.46 to 0.68; 21 studies, 2148 participants; moderate-certainty evidence). We downgraded the certainty for possible publication bias. Review authors found that there was probably little or no difference in the risks of adverse events, reported as deep vein thrombosis (RR 1.16, 95% CI 0.74 to 1.81; 22 studies), pulmonary embolism (RR 1.01, 95% CI 0.36 to 2.86; 9 studies), myocardial infarction (RR 1.00, 95% CI 0.23 to 4.33; 8 studies), cerebrovascular accident (RR 1.45, 95% CI 0.56 to 3.70; 8 studies), or death (RR 1.01, 95% CI 0.70 to 1.46; 10 studies). We judged evidence from these outcomes to be moderate certainty, downgraded for imprecision. Another review, with a similarly broad inclusion criteria, included 10 studies, and found that tranexamic acid probably reduces the volume of transfused PRC (0.53 fewer units, 95% CI 0.27 to 0.80; 7 studies, 813 participants; moderate-certainty evidence). We downgraded the certainty because of unexplained high levels of statistical heterogeneity. No reviews reported outcomes of postoperative delirium, ADL, or HRQoL. Iron (9 reviews, 7 eligible RCTs) Whilst all reviews included studies in hip fracture populations, most also included other surgical populations. The most current, direct evidence was reported in two RCTs, with 403 participants with hip fracture; iron was given intravenously, starting preoperatively. This review did not include evidence for iron with erythropoietin. The methodological quality of this review was low. In this review, there was low-certainty evidence from two studies (403 participants) that there may be little or no difference according to whether intravenous iron was given in: the number of people who required ABT (RR 0.90, 95% CI 0.73 to 1.11), the volume of transfused blood (MD -0.07 units of PRC, 95% CI -0.31 to 0.17), infection (RR 0.99, 95% CI 0.55 to 1.80), or mortality within 30 days (RR 1.06, 95% CI 0.53 to 2.13). There may be little or no difference in delirium (25 events in the iron group compared to 26 events in control group; 1 study, 303 participants; low-certainty evidence). We are very unsure whether there was any difference in HRQoL, since it was reported without an effect estimate. The findings were largely consistent across reviews. We downgraded the evidence for imprecision, because studies included few participants, and the wide CIs indicated possible benefit and harm. No reviews reported outcomes of cognitive dysfunction, ADL, or HRQoL. AUTHORS' CONCLUSIONS: Tranexamic acid probably reduces the need for ABT in adults undergoing hip fracture surgery, and there is probably little or no difference in adverse events. For iron, there may be little or no difference in overall clinical effects, but this finding is limited by evidence from only a few small studies. Reviews of these treatments did not adequately include patient-reported outcome measures (PROMS), and evidence for their effectiveness remains incomplete. We were unable to effectively explore the impact of timing and route of administration between reviews. A lack of systematic reviews for other types of pharmacological or any non-pharmacological interventions to reduce the need for ABT indicates a need for further evidence syntheses to explore this. Methodologically sound evidence syntheses should include PROMS within four months of surgery.


Subject(s)
Anemia , Emergence Delirium , Hip Fractures , Tranexamic Acid , Humans , Aged , Tranexamic Acid/therapeutic use , Erythrocyte Transfusion , Systematic Reviews as Topic , Hip Fractures/surgery , Hemorrhage , Anemia/therapy , Iron
10.
Cochrane Database Syst Rev ; 6: CD013499, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37272509

ABSTRACT

BACKGROUND: Pelvic, hip, and long bone fractures can result in significant bleeding at the time of injury, with further blood loss if they are treated with surgical fixation. People undergoing surgery are therefore at risk of requiring a blood transfusion and may be at risk of peri-operative anaemia. Pharmacological interventions for blood conservation may reduce the risk of requiring an allogeneic blood transfusion and associated complications. OBJECTIVES: To assess the effectiveness of different pharmacological interventions for reducing blood loss in definitive surgical fixation of the hip, pelvic, and long bones. SEARCH METHODS: We used a predefined search strategy to search CENTRAL, MEDLINE, PubMed, Embase, CINAHL, Transfusion Evidence Library, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform (ICTRP) from inception to 7 April 2022, without restrictions on language, year, or publication status. We handsearched reference lists of included trials to identify further relevant trials. We contacted authors of ongoing trials to acquire any unpublished data. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of people who underwent trauma (non-elective) surgery for definitive fixation of hip, pelvic, and long bone (pelvis, tibia, femur, humerus, radius, ulna and clavicle) fractures only. There were no restrictions on gender, ethnicity, or age. We excluded planned (elective) procedures (e.g. scheduled total hip arthroplasty), and studies published since 2010 that had not been prospectively registered. Eligible interventions included: antifibrinolytics (tranexamic acid, aprotinin, epsilon-aminocaproic acid), desmopressin, factor VIIa and XIII, fibrinogen, fibrin sealants, and non-fibrin sealants. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using GRADE. We did not perform a network meta-analysis due to lack of data. MAIN RESULTS: We included 13 RCTs (929 participants), published between 2005 and 2021. Three trials did not report any of our predefined outcomes and so were not included in quantitative analyses (all were tranexamic acid versus placebo). We identified three comparisons of interest: intravenous tranexamic acid versus placebo; topical tranexamic acid versus placebo; and recombinant factor VIIa versus placebo. We rated the certainty of evidence as very low to low across all outcomes. Comparison 1. Intravenous tranexamic acid versus placebo Intravenous tranexamic acid compared to placebo may reduce the risk of requiring an allogeneic blood transfusion up to 30 days (RR 0.48, 95% CI 0.34 to 0.69; 6 RCTs, 457 participants; low-certainty evidence) and may result in little to no difference in all-cause mortality (Peto odds ratio (Peto OR) 0.38, 95% CI 0.05 to 2.77; 2 RCTs, 147 participants; low-certainty evidence).  It may result in little to no difference in risk of participants experiencing myocardial infarction (risk difference (RD) 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 199 participants; low-certainty evidence), and cerebrovascular accident/stroke (RD 0.00, 95% CI -0.02 to 0.02; 3 RCTs, 324 participants; low-certainty evidence).  We are uncertain if there is a difference between groups for risk of deep vein thrombosis (Peto OR 2.15, 95% CI 0.22 to 21.35; 4 RCTs, 329 participants, very low-certainty evidence), pulmonary embolism (Peto OR 1.08, 95% CI 0.07 to 17.66; 4 RCTs, 329 participants; very low-certainty evidence), and suspected serious drug reactions (RD 0.00, 95% CI -0.03 to 0.03; 2 RCTs, 185 participants; very low-certainty evidence). No data were available for number of red blood cell units transfused, reoperation, or acute transfusion reaction. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures), and upgraded the evidence for transfusion requirement for a large effect.  Comparison 2. Topical tranexamic acid versus placebo We are uncertain if there is a difference between topical tranexamic acid and placebo for risk of requiring an allogeneic blood transfusion (RR 0.31, 95% CI 0.08 to 1.22; 2 RCTs, 101 participants), all-cause mortality (RD 0.00, 95% CI -0.10 to 0.10; 1 RCT, 36 participants), risk of participants experiencing myocardial infarction (Peto OR 0.15, 95% CI 0.00 to 7.62; 1 RCT, 36 participants), cerebrovascular accident/stroke (RD 0.00, 95% CI -0.06 to 0.06; 1 RCT, 65 participants); and deep vein thrombosis (Peto OR 1.11, 95% CI 0.07 to 17.77; 2 RCTs, 101 participants).  All outcomes reported were very low-certainty evidence. No data were available for number of red blood cell units transfused, reoperation, incidence of pulmonary embolism, acute transfusion reaction, or suspected serious drug reactions. We downgraded the certainty of the evidence for imprecision (wide confidence intervals around the estimate and small sample size, particularly for rare events), inconsistency (moderate heterogeneity), and risk of bias (unclear or high risk methods of blinding and allocation concealment in the assessment of subjective measures, and high risk of attrition and reporting biases in one trial). Comparison 3. Recombinant factor VIIa versus placebo   Only one RCT of 48 participants reported data for recombinant factor VIIa versus placebo, so we have not presented the results here. AUTHORS' CONCLUSIONS: We cannot draw conclusions from the current evidence due to lack of data. Most published studies included in our analyses assessed the use of tranexamic acid (compared to placebo, or using different routes of administration).  We identified 27 prospectively registered ongoing RCTs (total target recruitment of 4177 participants by end of 2023). The ongoing trials create six new comparisons: tranexamic acid (tablet + injection) versus placebo; intravenous tranexamic acid versus oral tranexamic acid; topical tranexamic acid versus oral tranexamic acid; different intravenous tranexamic acid dosing regimes; topical tranexamic acid versus topical fibrin glue; and fibrinogen (injection) versus placebo.


Subject(s)
Arthroplasty, Replacement , Fractures, Bone , Hemostatics , Myocardial Infarction , Pulmonary Embolism , Stroke , Tranexamic Acid , Transfusion Reaction , Venous Thrombosis , Humans , Tranexamic Acid/therapeutic use , Hemorrhage/chemically induced , Hemorrhage/prevention & control , Hemostatics/therapeutic use , Fibrinogen , Venous Thrombosis/drug therapy , Stroke/drug therapy , Myocardial Infarction/drug therapy , Fractures, Bone/surgery
11.
Cochrane Database Syst Rev ; 5: CD013600, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37162745

ABSTRACT

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Immunoglobulins
12.
Nat Med ; 29(5): 1146-1154, 2023 05.
Article in English | MEDLINE | ID: mdl-37169862

ABSTRACT

Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.


Subject(s)
COVID-19 , Obesity, Morbid , Humans , COVID-19 Vaccines , Longitudinal Studies , Prospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Obesity/epidemiology , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
13.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37039790

ABSTRACT

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Middle Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bayes Theorem , COVID-19/therapy , Renin-Angiotensin System/drug effects , Hospitalization , COVID-19 Drug Treatment/methods , Critical Illness , Receptors, Chemokine/antagonists & inhibitors
14.
BMJ Open ; 13(4): e071277, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105693

ABSTRACT

INTRODUCTION: COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS: COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION: Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION: Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Hospitalization , Immunization, Passive/methods , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
15.
Cochrane Database Syst Rev ; 3: CD012349, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36877640

ABSTRACT

BACKGROUND: Regularly transfused people with sickle cell disease (SCD) and people with thalassaemia are at risk of iron overload. Iron overload can lead to iron toxicity in vulnerable organs such as the heart, liver and endocrine glands, which can be prevented and treated with iron-chelating agents. The intensive demands and uncomfortable side effects of therapy can have a negative impact on daily activities and wellbeing, which may affect adherence. OBJECTIVES: To identify and assess the effectiveness of different types of interventions (psychological and psychosocial, educational, medication interventions, or multi-component interventions) and interventions specific to different age groups, to improve adherence to iron chelation therapy compared to another listed intervention, or standard care in people with SCD or thalassaemia. SEARCH METHODS: We searched CENTRAL (Cochrane Library), MEDLINE, PubMed, Embase, CINAHL, PsycINFO, ProQuest Dissertations & Global Theses, Web of Science & Social Sciences Conference Proceedings Indexes and ongoing trial databases (13 December 2021). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register (1 August 2022). SELECTION CRITERIA: For trials comparing medications or medication changes, only randomised controlled trials (RCTs) were eligible for inclusion. For studies including psychological and psychosocial interventions, educational interventions, or multi-component interventions, non-randomised studies of interventions (NRSIs), controlled before-after studies, and interrupted time series studies with adherence as a primary outcome were also eligible for inclusion. DATA COLLECTION AND ANALYSIS: For this update, two authors independently assessed trial eligibility and risk of bias, and extracted data. We assessed the certainty of the evidence using GRADE. MAIN RESULTS: We included 19 RCTs and one NRSI published between 1997 and 2021. One trial assessed medication management, one assessed an education intervention (NRSI) and 18 RCTs were of medication interventions. Medications assessed were subcutaneous deferoxamine, and two oral chelating agents, deferiprone and deferasirox. We rated the certainty of evidence as very low to low across all outcomes identified in this review. Four trials measured quality of life (QoL) with validated instruments, but provided no analysable data and reported no difference in QoL. We identified nine comparisons of interest. 1. Deferiprone versus deferoxamine We are uncertain whether or not deferiprone affects adherence to iron chelation therapy (four RCTs, unpooled, very low-certainty evidence), all-cause mortality (risk ratio (RR) 0.47, 95% confidence interval (CI) 0.18 to 1.21; 3 RCTs, 376 participants; very low-certainty evidence), or serious adverse events (SAEs) (RR 1.43, 95% CI 0.83 to 2.46; 1 RCT, 228 participants; very low-certainty evidence).  Adherence was reported as "good", "high" or "excellent" by all seven trials, though the data could not be analysed formally: adherence ranged from 69% to 95% (deferiprone, mean 86.6%), and 71% to 93% (deferoxamine, mean 78.8%), based on five trials (474 participants) only. 2. Deferasirox versus deferoxamine We are uncertain whether or not deferasirox affects adherence to iron chelation therapy (three RCTs, unpooled, very low-certainty evidence), although medication adherence was high in all trials. We are uncertain whether or not there is any difference between the drug therapies in serious adverse events (SAEs) (SCD or thalassaemia) or all-cause mortality (thalassaemia). 3. Deferiprone versus deferasirox We are uncertain if there is a difference between oral deferiprone and deferasirox based on a single trial in children (average age 9 to 10 years) with any hereditary haemoglobinopathy in adherence, SAEs and all-cause mortality. 4. Deferasirox film-coated tablet (FCT) versus deferasirox dispersible tablet (DT) One RCT compared deferasirox in different tablet forms. There may be a preference for FCTs, shown through a trend for greater adherence (RR 1.10, 95% CI 0.99 to 1.22; 1 RCT, 88 participants), although medication adherence was high in both groups (FCT 92.9%; DT 85.3%). We are uncertain if there is a benefit in chelation-related AEs with FCTs. We are uncertain if there is a difference in the incidence of SAEs, all-cause mortality or sustained adherence. 5. Deferiprone and deferoxamine combined versus deferiprone alone We are uncertain if there is a difference in adherence, though reporting was usually narrative as triallists report it was "excellent" in both groups (three RCTs, unpooled). We are uncertain if there is a difference in the incidence of SAEs and all-cause mortality.  6. Deferiprone and deferoxamine combined versus deferoxamine alone We are uncertain if there is a difference in adherence (four RCTs), SAEs (none reported in the trial period) and all-cause mortality (no deaths reported in the trial period). There was high adherence in all trials. 7. Deferiprone and deferoxamine combined versus deferiprone and deferasirox combined There may be a difference in favour of deferiprone and deferasirox (combined) in rates of adherence (RR 0.84, 95% CI 0.72 to 0.99) (one RCT), although it was high (> 80%) in both groups. We are uncertain if there is a difference in SAEs, and no deaths were reported in the trial, so we cannot draw conclusions based on these data (one RCT). 8. Medication management versus standard care We are uncertain if there is a difference in QoL (one RCT), and we could not assess adherence due to a lack of reporting in the control group. 9. Education versus standard care One quasi-experimental (NRSI) study could not be analysed due to the severe baseline confounding. AUTHORS' CONCLUSIONS: The medication comparisons included in this review had higher than average adherence rates not accounted for by differences in medication administration or side effects, though often follow-up was not good (high dropout over longer trials), with adherence based on a per protocol analysis. Participants may have been selected based on higher adherence to trial medications at baseline. Also, within the clinical trial context, there is increased attention and involvement of clinicians, thus high adherence rates may be an artefact of trial participation. Real-world, pragmatic trials in community and clinic settings are needed that examine both confirmed or unconfirmed adherence strategies that may increase adherence to iron chelation therapy. Due to lack of evidence this review cannot comment on intervention strategies for different age groups.


Subject(s)
Anemia, Sickle Cell , Drug-Related Side Effects and Adverse Reactions , Thalassemia , Child , Humans , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Chelating Agents , Chelation Therapy , Deferoxamine/adverse effects , Iron
16.
J Infect Dis ; 228(3): 245-250, 2023 08 11.
Article in English | MEDLINE | ID: mdl-36967714

ABSTRACT

Convalescent plasma (CP) treatment of coronavirus disease 2019 (COVID-19) has shown significant therapeutic effect when administered early (eg, Argentinian trial showing reduced hospitalization) but has in general been ineffective (eg, REMAP-CAP trial without improvement during hospitalization). To investigate whether the differences in CP used could explain the different outcomes, we compared neutralizing antibodies, anti-spike IgG, and avidity of CP used in the REMAP-CAP and Argentinian trials and in convalescent vaccinees. We found no difference between the trial plasmas, emphasizing initial patient serostatus as treatment efficacy predictor. By contrast, vaccinee CP showed significantly higher titers and avidity, being preferable for future CP treatment. Clinical Trials Registration. NCT02735707 and NCT04479163.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Blood Donors , COVID-19/therapy , COVID-19 Serotherapy , Immunization, Passive
17.
Transfusion ; 63(5): 993-1004, 2023 05.
Article in English | MEDLINE | ID: mdl-36960741

ABSTRACT

BACKGROUND: Managing critical bleeding with massive transfusion (MT) requires a multidisciplinary team, often physically separated, to perform several simultaneous tasks at short notice. This places a significant cognitive load on team members, who must maintain situational awareness in rapidly changing scenarios. Similar resuscitation scenarios have benefited from the use of clinical decision support (CDS) tools. STUDY DESIGN AND METHODS: A multicenter, multidisciplinary, user-centered design (UCD) study was conducted to design a computerized CDS for MT. This study included analysis of the problem context with a cognitive walkthrough, development of a user requirement statement, and co-design with users of prototypes for testing. The final prototype was evaluated using qualitative assessment and the System Usability Scale (SUS). RESULTS: Eighteen participants were recruited across four institutions. The first UCD cycle resulted in the development of four prototype interfaces that addressed the user requirements and context of implementation. Of these, the preferred interface was further developed in the second UCD cycle to create a high-fidelity web-based CDS for MT. This prototype was evaluated by 15 participants using a simulated bleeding scenario and demonstrated an average SUS of 69.3 (above average, SD 16) and a clear interface with easy-to-follow blood product tracking. DISCUSSION: We used a UCD process to explore a highly complex clinical scenario and develop a prototype CDS for MT that incorporates distributive situational awareness, supports multiple user roles, and allows simulated MT training. Evaluation of the impact of this prototype on the efficacy and efficiency of managing MT is currently underway.


Subject(s)
Decision Support Systems, Clinical , Humans , User-Centered Design , Blood Transfusion , Awareness , Computer Simulation
18.
Cochrane Database Syst Rev ; 2: CD013649, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800489

ABSTRACT

BACKGROUND: Vascular surgery may be followed by internal bleeding due to inadequate surgical haemostasis, abnormal clotting, or surgical complications. Bleeding ranges from minor, with no transfusion requirement, to massive, requiring multiple blood product transfusions. There are a number of drugs, given systemically or applied locally, which may reduce the need for blood transfusion. OBJECTIVES: To assess the effectiveness and safety of anti-fibrinolytic and haemostatic drugs and agents in reducing bleeding and the need for blood transfusion in people undergoing major vascular surgery or vascular procedures with a risk of moderate or severe (> 500 mL) blood loss. SEARCH METHODS: We searched: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL, and Transfusion Evidence Library. We also searched the WHO ICTRP and ClinicalTrials.gov trial registries for ongoing and unpublished trials. Searches used a combination of MeSH and free text terms from database inception to 31 March 2022, without restriction on language or publication status. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in adults of drug treatments to reduce bleeding due to major vascular surgery or vascular procedures with a risk of moderate or severe blood loss, which used placebo, usual care or another drug regimen as control. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were units of red cells transfused and all-cause mortality. Our secondary outcomes included risk of receiving an allogeneic blood product, risk of reoperation or repeat procedure due to bleeding, risk of a thromboembolic event, risk of a serious adverse event and length of hospital stay. We used GRADE to assess certainty of evidence. MAIN RESULTS: We included 22 RCTs with 3393 participants analysed, of which one RCT with 69 participants was reported only in abstract form, with no usable data. Seven RCTs evaluated systemic drug treatments (three aprotinin, two desmopressin, two tranexamic acid) and 15 RCTs evaluated topical drug treatments (drug-containing bioabsorbable dressings or glues), including fibrin, thrombin, collagen, gelatin, synthetic sealants and one investigational new agent. Most trials were conducted in high-income countries and the majority of the trials only included participants undergoing elective surgery. We also identified two ongoing RCTs. We were unable to perform the planned network meta-analysis due to the sparse reporting of outcomes relevant to this review. Systemic drug treatments We identified seven trials of three systemic drugs: aprotinin, desmopressin and tranexamic acid, all with placebo controls. The trials of aprotinin and desmopressin were small with very low-certainty evidence for all of our outcomes. Tranexamic acid versus placebo was the systemic drug comparison with the largest number of participants (2 trials; 1460 participants), both at low risk of bias. The largest of these included a total of 9535 individuals undergoing a number of different higher risk surgeries and reported limited information on the vascular subgroup (1399 participants). Neither trial reported the number of units of red cells transfused per participant up to 30 days. Three outcomes were associated with very low-certainty evidence due to the very wide confidence intervals (CIs) resulting from small study sizes and low number of events. These were: all-cause mortality up to 30 days; number of participants requiring an allogeneic blood transfusion up to 30 days; and risk of requiring a repeat procedure or operation due to bleeding. Tranexamic acid may have no effect on the risk of thromboembolic events up to 30 days (risk ratio (RR) 1.10, 95% CI 0.88 to 1.36; 1 trial, 1360 participants; low-certainty evidence due to imprecision). There is one large ongoing trial (8320 participants) comparing tranexamic acid versus placebo in people undergoing non-cardiac surgery who are at high risk of requiring a red cell transfusion. This aims to complete recruitment in April 2023. This trial has primary outcomes of proportion of participants transfused with red blood cells and incidence of venous thromboembolism (DVT or PE). Topical drug treatments Most trials of topical drug treatments were at high risk of bias due to their open-label design (compared with usual care, or liquids were compared with sponges). All of the trials were small, most were very small, and few reported clinically relevant outcomes in the postoperative period. Fibrin sealant versus usual care was the topical drug comparison with the largest number of participants (5 trials, 784 participants). The five trials that compared fibrin sealant with usual care were all at high risk of bias, due to the open-label trial design with no measures put in place to minimise reporting bias. All of the trials were funded by pharmaceutical companies. None of the five trials reported the number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. The other three outcomes were associated with very low-certainty evidence with wide confidence intervals due to small sample sizes and the low number of events, these were: all-cause mortality up to 30 days; risk of requiring a repeat procedure due to bleeding; and risk of thromboembolic disease up to 30 days. We identified one large trial (500 participants) comparing fibrin sealant versus usual care in participants undergoing abdominal aortic aneurysm repair, which has not yet started recruitment. This trial lists death due to arterial disease and reintervention rates as primary outcomes. AUTHORS' CONCLUSIONS: Because of a lack of data, we are uncertain whether any systemic or topical treatments used to reduce bleeding due to major vascular surgery have an effect on: all-cause mortality up to 30 days; risk of requiring a repeat procedure or operation due to bleeding; number of red cells transfused per participant up to 30 days or the number of participants requiring an allogeneic blood transfusion up to 30 days. There may be no effect of tranexamic acid on the risk of thromboembolic events up to 30 days, this is important as there has been concern that this risk may be increased. Trials with sample size targets of thousands of participants and clinically relevant outcomes are needed, and we look forward to seeing the results of the ongoing trials in the future.


Subject(s)
Tranexamic Acid , Adult , Humans , Aprotinin , Blood Transfusion , Deamino Arginine Vasopressin/therapeutic use , Fibrin Tissue Adhesive , Hemorrhage/etiology , Hemorrhage/prevention & control , Network Meta-Analysis , Tranexamic Acid/therapeutic use
19.
Cochrane Database Syst Rev ; 2: CD013600, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36734509

ABSTRACT

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


ANTECEDENTES: El plasma de convaleciente podría reducir la mortalidad en pacientes con enfermedades respiratorias víricas, y se está investigando como posible tratamiento para la enfermedad por coronavirus 2019 (covid­19). Se requiere un profundo conocimiento del conjunto de evidencia actual sobre los beneficios y riesgos de esta intervención. OBJETIVOS: Evaluar la efectividad y seguridad de la transfusión de plasma de convaleciente en el tratamiento de las personas con covid­19; y mantener la vigencia de la evidencia con un enfoque de revisión sistemática continua. MÉTODOS DE BÚSQUEDA: Para identificar estudios en curso y completados, se realizaron búsquedas en la base de datos COVID­19 de la OMS: literatura global sobre la enfermedad por coronavirus, MEDLINE, Embase, el Registro Cochrane de Estudios de covid­19 y la Plataforma COVID­19 L*OVE de Epistemonikos. Se realizaron búsquedas mensuales hasta el 3 de marzo de 2022. CRITERIOS DE SELECCIÓN: Se incluyeron ensayos controlados aleatorizados (ECA) que evaluaron el plasma de convaleciente para la covid­19, independientemente de la gravedad de la enfermedad, la edad, el sexo o el origen étnico. Se excluyeron los estudios que incluyeron poblaciones con otras enfermedades por coronavirus, como el síndrome respiratorio agudo grave (SARS) o el síndrome respiratorio de Oriente Medio (MERS), así como los estudios que evaluaron la inmunoglobulina estándar. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Se siguió la metodología estándar de Cochrane. Para evaluar el sesgo en los estudios incluidos se utilizó la herramienta RoB 2. Se utilizó el método GRADE para evaluar la certeza de la evidencia para los siguientes desenlaces: mortalidad por todas las causas hasta el día 28, empeoramiento y mejoría del estado clínico (para personas con enfermedad moderada a grave), ingreso hospitalario o muerte, resolución de los síntomas de covid­19 (para personas con enfermedad leve), calidad de vida, eventos adversos de grado 3 o 4 y eventos adversos graves. RESULTADOS PRINCIPALES: En esta cuarta versión actualizada de la revisión se incluyeron 33 ECA con 24 861 participantes, de los cuales 11 432 recibieron plasma de convaleciente. De ellos, 9 estudios son unicéntricos y 24 multicéntricos. Se realizaron 14 estudios en América, 8 en Europa, 3 en el Sudeste Asiático, 2 en África, 2 en el Pacífico occidental, 3 en el Mediterráneo oriental y 1 en varias regiones. Se identificaron otros 49 estudios en curso que evaluaron el plasma de convaleciente, y 33 estudios que informaban de que se habían completado. Personas con un diagnóstico confirmado de covid­19 y enfermedad de moderada a grave El uso de plasma de convaleciente se investigó en 29 ECA con 22 728 participantes con enfermedad moderada a grave. En 23 ECA con 22 020 participantes se comparó el plasma de convaleciente con el placebo o la atención habitual sola, en 5 se comparó con plasma estándar y en 1, con inmunoglobulina humana. Se evalúan subgrupos sobre detección de anticuerpos, aparición de síntomas, grupos de ingresos de países y varias comorbilidades en el texto completo. Plasma de convaleciente versus placebo o atención habitual sola El plasma de convaleciente no reduce la mortalidad por todas las causas hasta el día 28 (razón de riesgos [RR] 0,98; intervalo de confianza [IC] del 95%: 0,92 a 1,03; 220 por cada 1000; 21 ECA, 19 021 participantes; evidencia de certeza alta). Tiene poca o ninguna repercusión en la necesidad de ventilación mecánica invasiva o la muerte (RR 1,03; IC del 95%: 0,97 a 1,11; 296 por cada 1000; seis ECA, 14 477 participantes; evidencia de certeza alta) y no tiene ningún efecto en si los participantes reciben el alta hospitalaria (RR 1,00; IC de 95%: 0,97 a 1,02; 665 por cada 1000; seis ECA, 12 721 participantes; evidencia de certeza alta). El plasma de convaleciente podría tener poca o ninguna repercusión en la calidad de vida (DM 1,00; IC del 95%: ­2,14 a 4,14; un ECA, 483 participantes; evidencia de certeza baja). El plasma de convaleciente podría tener poco o ningún efecto en el riesgo de eventos adversos de grado 3 y 4 (RR 1,17; IC del 95%: 0,96 a 1,42; 212 por cada 1000; seis ECA, 2392 participantes; evidencia de certeza baja). Es probable que tenga poco o ningún efecto sobre el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,91 a 1,44; 135 por cada 1000; seis ECA, 3901 participantes; evidencia de certeza moderada). Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce o aumenta la mortalidad por cualquier causa hasta el día 28 (RR 0,73; IC del 95%: 0,45 a 1,19; 129 por cada 1000; cuatro ECA, 484 participantes; evidencia de certeza muy baja). No se sabe si el plasma de convaleciente reduce o aumenta la necesidad de ventilación mecánica invasiva o la muerte (RR 5,59; IC del 95%: 0,29 a 108,38; 311 por cada 1000; un estudio, 34 participantes; evidencia de certeza muy baja) ni si reduce o aumenta el riesgo de eventos adversos graves (RR 0,80; IC 95%: 0,55 a 1,15; 236 por cada 1000; tres ECA, 327 participantes; evidencia de certeza muy baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus inmunoglobulina humana El plasma de convaleciente podría tener poco o ningún efecto sobre la mortalidad por cualquier causa hasta el día 28 (RR 1,07; IC del 95%: 0,76 a 1,50; 464 por cada 1000; un estudio, 190 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Personas con un diagnóstico confirmado de infección por SARS­CoV­2 y enfermedad leve Se identificaron dos ECA, con 536 participantes, que compararon el plasma de convaleciente con placebo o atención habitual sola y dos ECA, con 1597 participantes con enfermedad leve, que compararon el plasma de convaleciente con plasma estándar. Plasma de convaleciente versus placebo o atención habitual sola No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (odds ratio [OR] 0,36; IC del 95%: 0,09 a 1,46; 8 por cada 1000; dos ECA, 536 participantes; evidencia de certeza muy baja). Podría tener poco o ningún efecto en el ingreso hospitalario o la muerte a los 28 días (RR 1,05; IC del 95%: 0,60 a 1,84; 117 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el tiempo hasta la resolución de los síntomas de covid­19 (cociente de riesgos instantáneos [CRI] 1,05; IC del 95%: 0,85 a 1,30; 483 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el riesgo de eventos adversos de grados 3 y 4 (RR 1,29; IC del 95%: 0,75 a 2,19; 144 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja) y en el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,66 a 1,94; 133 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (OR 0,30; IC del 95%: 0,05 a 1,75; 2 por cada 1000; dos ECA, 1597 participantes; evidencia de certeza muy baja). Es probable que reduzca el ingreso hospitalario o la muerte a los 28 días (RR 0,49; IC del 95%: 0,31 a 0,75; 36 por cada 1000; dos ECA, 1595 participantes; evidencia de certeza moderada). El plasma de convaleciente podría tener poco o ningún efecto sobre la resolución inicial de los síntomas hasta el día 28 (RR 1,12; IC del 95%: 0,98 a 1,27; un ECA, 416 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Esta es una revisión sistemática continua. Cada mes se busca nueva evidencia y se actualiza la revisión cuando se identifica evidencia nueva relevante. CONCLUSIONES DE LOS AUTORES: Para la comparación del plasma de convaleciente versus placebo o la atención habitual sola, existe evidencia de certeza alta de que el plasma de convaleciente para personas con enfermedad moderada a grave no reduce la mortalidad y tiene poco o ningún efecto en la mejoría o el empeoramiento clínico. Es probable que tenga poco o ningún efecto en los eventos adversos graves. Para las personas con enfermedad leve, existe evidencia de certeza baja para los desenlaces principales. Hay 49 estudios en curso y 33 estudios que declaran estar completados en un registro de ensayos. La publicación de los estudios en curso podría resolver algunas de las incertidumbres en torno al tratamiento con plasma de convaleciente para personas con enfermedad asintomática o leve.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/therapy , COVID-19 Serotherapy , Immunoglobulins , SARS-CoV-2
20.
Cochrane Database Syst Rev ; 1: CD015167, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36700518

ABSTRACT

BACKGROUND: Hyperimmune immunoglobulin (hIVIG) contains polyclonal antibodies, which can be prepared from large amounts of pooled convalescent plasma or prepared from animal sources through immunisation. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). This review was previously part of a parent review addressing convalescent plasma and hIVIG for people with COVID-19 and was split to address hIVIG and convalescent plasma separately. OBJECTIVES: To assess the benefits and harms of hIVIG therapy for the treatment of people with COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Research Database, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform and Medline and Embase from 1 January 2019 onwards. We carried out searches on 31 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated hIVIG for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies that evaluated standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used RoB 2. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), quality of life, adverse events, and serious adverse events. MAIN RESULTS: We included five RCTs with 947 participants, of whom 688 received hIVIG prepared from humans, 18 received heterologous swine glyco-humanised polyclonal antibody, and 241 received equine-derived processed and purified F(ab')2 fragments. All participants were hospitalised with moderate-to-severe disease, most participants were not vaccinated (only 12 participants were vaccinated). The studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern. There are no data for people with COVID-19 with no symptoms (asymptomatic) or people with mild COVID-19. We identified a further 10 ongoing studies evaluating hIVIG. Benefits of hIVIG prepared from humans We included data on one RCT (579 participants) that assessed the benefits and harms of hIVIG 0.4 g/kg compared to saline placebo. hIVIG may have little to no impact on all-cause mortality at 28 days (risk ratio (RR) 0.79, 95% confidence interval (CI) 0.43 to 1.44; absolute effect 77 per 1000 with placebo versus 61 per 1000 (33 to 111) with hIVIG; low-certainty evidence). The evidence is very uncertain about the effect on worsening of clinical status at day 7 (RR 0.85, 95% CI 0.58 to 1.23; very low-certainty evidence). It probably has little to no impact on improvement of clinical status on day 28 (RR 1.02, 95% CI 0.97 to 1.08; moderate-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if hIVIG has any impact on quality of life. Harms of hIVIG prepared from humans hIVIG may have little to no impact on adverse events at any grade on day 1 (RR 0.98, 95% CI 0.81 to 1.18; 431 per 1000; 1 study 579 participants; low-certainty evidence). Patients receiving hIVIG probably experience more adverse events at grade 3-4 severity than patients who receive placebo (RR 4.09, 95% CI 1.39 to 12.01; moderate-certainty evidence). hIVIG may have little to no impact on the composite outcome of serious adverse events or death up to day 28 (RR 0.72, 95% CI 0.45 to 1.14; moderate-certainty evidence). We also identified additional results on the benefits and harms of other dose ranges of hIVIG, not included in the summary of findings table, but summarised in additional tables. Benefits of animal-derived polyclonal antibodies We included data on one RCT (241 participants) to assess the benefits and harms of receptor-binding domain-specific polyclonal F(ab´)2 fragments of equine antibodies (EpAbs) compared to saline placebo. EpAbs may reduce all-cause mortality at 28 days (RR 0.60, 95% CI 0.26 to 1.37; absolute effect 114 per 1000 with placebo versus 68 per 1000 (30 to 156) ; low-certainty evidence). EpAbs may reduce worsening of clinical status up to day 28 (RR 0.67, 95% CI 0.38 to 1.18; absolute effect 203 per 1000 with placebo versus 136 per 1000 (77 to 240); low-certainty evidence). It may have some effect on improvement of clinical status on day 28 (RR 1.06, 95% CI 0.96 to 1.17; low-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if EpAbs have any impact on quality of life. Harms of animal-derived polyclonal antibodies EpAbs may have little to no impact on the number of adverse events at any grade up to 28 days (RR 0.99, 95% CI 0.74 to 1.31; low-certainty evidence). Adverse events at grade 3-4 severity were not reported. Individuals receiving EpAbs may experience fewer serious adverse events than patients receiving placebo (RR 0.67, 95% CI 0.38 to 1.19; low-certainty evidence). We also identified additional results on the benefits and harms of other animal-derived polyclonal antibody doses, not included in the summary of findings table, but summarised in additional tables. AUTHORS' CONCLUSIONS: We included data from five RCTs that evaluated hIVIG compared to standard therapy, with participants with moderate-to-severe disease. As the studies evaluated different preparations (from humans or from various animals) and doses, we could not pool them. hIVIG prepared from humans may have little to no impact on mortality, and clinical improvement and worsening. hIVIG may increase grade 3-4 adverse events. Studies did not evaluate quality of life. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies may reduce mortality and serious adverse events, and may reduce clinical worsening. However, the studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern and prior to widespread vaccine rollout. As no studies evaluated hIVIG for participants with asymptomatic infection or mild disease, benefits for these individuals remains uncertain. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.


Subject(s)
COVID-19 Serotherapy , COVID-19 , Immunoglobulins , Humans , COVID-19/therapy , COVID-19/virology , Immunoglobulins/therapeutic use , SARS-CoV-2/genetics , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...