Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Cell Environ ; 44(9): 2966-2986, 2021 09.
Article in English | MEDLINE | ID: mdl-34053093

ABSTRACT

To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Microscopy, Electron, Scanning , Oligonucleotide Array Sequence Analysis , Plant Growth Regulators/physiology , Plant Leaves/ultrastructure , Plant Roots/physiology , Plant Shoots/physiology , Real-Time Polymerase Chain Reaction , Salt Stress , Xylem/metabolism
2.
Food Res Int ; 99(Pt 1): 206-215, 2017 09.
Article in English | MEDLINE | ID: mdl-28784477

ABSTRACT

Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com.


Subject(s)
Bacteria/metabolism , Data Mining/methods , Food Microbiology/methods , Food Preservation/methods , Machine Learning , Metabolomics/methods , Optical Imaging/methods , Red Meat/microbiology , Automation , Chromatography, High Pressure Liquid , Electronic Nose , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis , Models, Statistical , Pattern Recognition, Automated , Principal Component Analysis , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL