Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057326

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreas/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Fibroblasts/metabolism , Carcinogenesis/pathology , Tumor Microenvironment
2.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745372

ABSTRACT

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

3.
Nat Commun ; 14(1): 5195, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673892

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Animals , Mice , RNA , Epigenesis, Genetic , Regulatory Sequences, Nucleic Acid , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Methyltransferases , RNA-Binding Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34446564

ABSTRACT

In macrophages, homeostatic and immune signals induce distinct sets of transcriptional responses, defining cellular identity and functional states. The activity of lineage-specific and signal-induced transcription factors are regulated by chromatin accessibility and other epigenetic modulators. Glucocorticoids are potent antiinflammatory drugs; however, the mechanisms by which they selectively attenuate inflammatory genes are not yet understood. Acting through the glucocorticoid receptor (GR), glucocorticoids directly repress inflammatory responses at transcriptional and epigenetic levels in macrophages. A major unanswered question relates to the sequence of events that result in the formation of repressive regions. In this study, we identify bromodomain containing 9 (BRD9), a component of SWI/SNF chromatin remodeling complex, as a modulator of glucocorticoid responses in macrophages. Inhibition, degradation, or genetic depletion of BRD9 in bone marrow-derived macrophages significantly attenuated their responses to both liposaccharides and interferon inflammatory stimuli. Notably, BRD9-regulated genes extensively overlap with those regulated by the synthetic glucocorticoid dexamethasone. Pharmacologic inhibition of BRD9 potentiated the antiinflammatory responses of dexamethasone, while the genetic deletion of BRD9 in macrophages reduced high-fat diet-induced adipose inflammation. Mechanistically, BRD9 colocalized at a subset of GR genomic binding sites, and depletion of BRD9 enhanced GR occupancy primarily at inflammatory-related genes to potentiate GR-induced repression. Collectively, these findings establish BRD9 as a genomic antagonist of GR at inflammatory-related genes in macrophages, and reveal a potential for BRD9 inhibitors to increase the therapeutic efficacies of glucocorticoids.


Subject(s)
Chromatin Assembly and Disassembly , Dexamethasone/pharmacology , Gene Expression Regulation , Macrophages/immunology , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Domains , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Transcription Factors/genetics
5.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29754817

ABSTRACT

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Insulin-Secreting Cells/drug effects , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism , Vitamin D/pharmacology , Animals , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Chromatin Assembly and Disassembly , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Humans , Insulin/blood , Insulin/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mutagenesis, Site-Directed , Oxidative Phosphorylation/drug effects , Protein Binding , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/metabolism , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic/drug effects
6.
Cell ; 139(6): 1157-69, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20005808

ABSTRACT

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimer's disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimer's model mice and discovered that these animals are protected from Alzheimer's-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Abeta leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Abeta oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Abeta toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimer's disease therapy.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Longevity , Signal Transduction , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Animals , Humans , Male , Mice , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Receptor, IGF Type 1/metabolism
7.
Proc Natl Acad Sci U S A ; 102(44): 15977-82, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16239341

ABSTRACT

Repeated-epilation (Er) mutation in the mouse is inherited as an autosomal and semidominant mutation. Major defects in heterozygous adults and homozygous fetuses were associated with skin and were caused by abnormal ectodermal differentiation. Heterozygous mice are characterized by repeated hair loss and regrowth, and homozygous fetuses die at birth with severe abnormality in skin, limb, tail, and face. To identify the gene causing Er mutation, we have performed gene-expression profiles of skins and mouse embryonic fibroblasts from WT and mutant Er mice by using Affymetrix (Santa Clara, CA) chip analysis. By analyzing the candidate genes generated from gene-expression profiling, we identified a Sfn mutation in Er mice. A single nucleotide insertion in the Sfn (Stratifin, also called 14-3-3sigma) coding region results in a truncated protein lacking 40 amino acid residues at the C terminus. The mutation is linked with phenotypes of Er-heterozygous and -homozygous mice. Ectopic overexpression of WT 14-3-3sigma in Er/Er keratinocytes rescues defects in keratinocyte differentiation. Our study demonstrates that 14-3-3sigma is a crucial regulator for skin proliferation and differentiation.


Subject(s)
14-3-3 Proteins/genetics , Alopecia/genetics , Frameshift Mutation , Skin Abnormalities/genetics , Animals , Cell Differentiation , Cell Proliferation , Fibroblasts/cytology , Gene Expression Profiling , Heterozygote , Mice , Mice, Mutant Strains , Skin/cytology , Skin/pathology
8.
Proc Natl Acad Sci U S A ; 102(35): 12425-30, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16116086

ABSTRACT

IkappaB kinase (IKK) complex plays a key regulatory role in macrophages for NF-kappaB activation during both innate and adaptive immune responses. Because IKK1-/- mice died at birth, we differentiated functional macrophages from embryonic day 15.5 IKK1 mutant embryonic liver. The embryonic liver-derived macrophage (ELDM) showed enhanced phagocytotic clearance of bacteria, more efficient antigen-presenting capacity, elevated secretion of several key proinflammatory cytokines and chemokines, and known NFkappaB target genes. Increased NFkappaB activity in IKK1 mutant ELDM was the result of prolonged degradation of IkappaBalpha in response to infectious pathogens. The delayed restoration of IkappaBalpha in pathogen-activated IKK1-/- ELDM was a direct consequence of uncontrolled IKK2 kinase activity. We hypothesize that IKK1 plays a checkpoint role in the proper control of IkappaBalpha kinase activity in innate and adaptive immunity.


Subject(s)
Macrophages/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/deficiency , Animals , Antigen Presentation , Chemokines/biosynthesis , Cytokines/biosynthesis , Female , I-kappa B Kinase , I-kappa B Proteins/metabolism , In Vitro Techniques , Inflammation Mediators/metabolism , Liver/cytology , Liver/embryology , Liver/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-KappaB Inhibitor alpha , Phagocytosis , Phosphorylation , Pregnancy , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL