Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
1.
Cell Host Microbe ; 31(9): 1507-1522.e5, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37708853

ABSTRACT

Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.


Subject(s)
CD8-Positive T-Lymphocytes , Proviruses , Humans , In Situ Hybridization, Fluorescence , Phenotype , CD4-Positive T-Lymphocytes
3.
Ann Neurol ; 94(4): 798-802, 2023 10.
Article in English | MEDLINE | ID: mdl-37493435

ABSTRACT

Here, we provide the first regional analysis of intact and defective HIV reservoirs within the brain. Brain tissue from both viremic and virally suppressed people with HIV (PWH) harbored HIV pol DNA in all regions tested, with lower levels present in basal ganglia and cerebellum relative to frontal white matter. Intact proviruses were primarily found in the frontal white matter but also detected in other brain regions of PWH, demonstrating frontal white matter as a major brain reservoir of intact, potentially replication competent HIV DNA that persists despite antiretroviral therapy. ANN NEUROL 2023;94:798-802.


Subject(s)
HIV Infections , HIV-1 , Humans , Proviruses/genetics , CD4-Positive T-Lymphocytes , HIV-1/genetics , Viral Load , HIV Infections/drug therapy , Brain
4.
Sci Immunol ; 8(85): eadg0033, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506197

ABSTRACT

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferon Type I/pharmacology , SARS-CoV-2 , Macaca mulatta , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Inflammation/drug therapy
5.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37236188

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Subject(s)
HIV Infections , Hematopoietic Stem Cell Transplantation , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca fascicularis , Viral Load
6.
J Virol ; 97(6): e0176022, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37223960

ABSTRACT

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , T Follicular Helper Cells , Animals , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , Lymph Nodes/cytology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , T Follicular Helper Cells/immunology , T Follicular Helper Cells/virology , B-Lymphocytes/immunology , B-Lymphocytes/virology , CD40 Ligand/genetics , Gene Expression/immunology , DNA, Viral/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/virology
8.
PLoS Pathog ; 19(3): e1011290, 2023 03.
Article in English | MEDLINE | ID: mdl-36989320

ABSTRACT

HIV-associated neurocognitive disorders (HAND) affect ~40% of virally suppressed people with HIV (PWH), however, the precise viral dependent and independent changes to the brain are unclear. Here we characterized the CNS reservoir and immune environment of SIV-infected (SIV+) rhesus macaques during acute (n = 4), chronic (n = 12) or ART-suppressed SIV infection (n = 11). Multiplex immunofluorescence for markers of SIV infection (vRNA/vDNA) and immune activation was performed on frontal cortex and matched colon tissue. SIV+ animals contained detectable viral DNA+ cells that were not reduced in the frontal cortex or the gut by ART, supporting the presence of a stable viral reservoir in these compartments. SIV+ animals had impaired blood brain barrier (BBB) integrity and heightened levels of astrocytes or myeloid cells expressing antiviral, anti-inflammatory or oxidative stress markers which were not abrogated by ART. Neuroinflammation and BBB dysfunction correlated with measures of viremia and immune activation in the gut. Furthermore, SIV-uninfected animals with experimentally induced gut damage and colitis showed a similar immune activation profile in the frontal cortex to those of SIV-infected animals, supporting the role of chronic gut damage as an independent source of neuroinflammation. Together, these findings implicate gut-associated immune activation/damage as a significant contributor to neuroinflammation in ART-suppressed HIV/SIV infection which may drive HAND pathogenesis.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/drug therapy , Macaca mulatta , Neuroinflammatory Diseases
9.
Nat Commun ; 14(1): 979, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813761

ABSTRACT

CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Chlorocebus aethiops , Disease Progression , CD4-Positive T-Lymphocytes
10.
Nat Med ; 29(3): 583-587, 2023 03.
Article in English | MEDLINE | ID: mdl-36807684

ABSTRACT

Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus. Low levels of immune activation and waning HIV-1-specific humoral and cellular immune responses indicated a lack of ongoing antigen production. Four years after analytical treatment interruption, the absence of a viral rebound and the lack of immunological correlates of HIV-1 antigen persistence are strong evidence for HIV-1 cure after CCR5Δ32/Δ32 HSCT.


Subject(s)
HIV Infections , HIV-1 , Hematopoietic Stem Cell Transplantation , Male , Humans , Animals , Mice , Middle Aged , HIV-1/genetics , HIV Infections/genetics , HIV Infections/therapy
11.
bioRxiv ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36324810

ABSTRACT

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-ß pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

12.
J Immunol ; 209(9): 1691-1702, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36122933

ABSTRACT

Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.


Subject(s)
Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Amino Acids/metabolism , Animals , CD8-Positive T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2/metabolism , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Viremia/metabolism
13.
Cell Rep ; 40(12): 111385, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130503

ABSTRACT

The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.


Subject(s)
Colorectal Neoplasms , HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Colorectal Neoplasms/pathology , Dendritic Cells , Host-Pathogen Interactions , Humans
14.
Viruses ; 14(9)2022 09 09.
Article in English | MEDLINE | ID: mdl-36146803

ABSTRACT

Human Immunodeficiency virus (HIV)-associated neurocognitive disorders are a major burden for people living with HIV whose viremia is stably suppressed with antiretroviral therapy. The pathogenesis of disease is likely multifaceted, with contributions from viral reservoirs including the brain, chronic and systemic inflammation, and traditional risk factors including drug use. Elucidating the effects of each element on disease pathogenesis is near impossible in human clinical or ex vivo studies, facilitating the need for robust and accurate non-human primate models. In this review, we describe the major non-human primate models of neuroHIV infection, their use to study the acute, chronic, and virally suppressed infection of the brain, and novel therapies targeting brain reservoirs and inflammation.


Subject(s)
Cognitive Dysfunction , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Brain , Cognition , HIV Infections/complications , Inflammation , Primates , Simian Acquired Immunodeficiency Syndrome/drug therapy , Viral Load
15.
Antimicrob Agents Chemother ; 66(8): e0060922, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35856680

ABSTRACT

Although current antiretroviral therapy (ART) has increased life expectancy, a cure for human immunodeficiency virus (HIV) remains elusive due to the persistence of the virus in tissue reservoirs. In the present study, we sought to elucidate the relationship between antiretrovirals (ARVs) and viral expression in the spleen. We performed mass spectrometry imaging (MSI) of 6 different ARVs, RNAscope in situ hybridization of viral RNA, and immunohistochemistry of three different fibrosis markers in the spleens of 8 uninfected and 10 reverse transcriptase simian-human immunodeficiency virus (RT-SHIV)-infected rhesus macaques (infected for 6 weeks) that had been dosed for 10 days with combination ART. Using MATLAB, computational quantitative imaging analysis was performed to evaluate the spatial and pharmacological relationships between the 6 ARVs, viral RNA, and fibrotic deposition. In these spleens, >50% of the spleen tissue area was not covered by any detectable ARV response (any concentration above the limits of detection for individual ARVs). The median spatial ARV coverage across all tissues was driven by maraviroc followed by efavirenz. Yet >50% of RNA-positive cells were not exposed to any detectable ARV. Quantifiable maraviroc and efavirenz colocalization with RNA-positive cells was usually greater than the in vitro concentration inhibiting 50% replication (IC50). Fibrosis markers covered more than 50% of the spleen tissue area and had negative relationships with cumulative ARV coverages. Our findings suggest that a heterogeneous ARV spatial distribution must be considered when evaluating viral persistence in lymphoid tissue reservoirs.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Fibrosis , HIV/genetics , HIV Infections/drug therapy , HIV Reverse Transcriptase/genetics , Humans , Macaca mulatta/genetics , Macaca mulatta/metabolism , Maraviroc/therapeutic use , RNA, Viral/genetics , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism , Spleen/metabolism , Viral Load
16.
Ann Neurol ; 92(4): 532-544, 2022 10.
Article in English | MEDLINE | ID: mdl-35867351

ABSTRACT

OBJECTIVE: Human immunodeficiency virus (HIV) persistence in blood and tissue reservoirs, including the brain, is a major barrier to HIV cure and possible cause of comorbid disease. However, the size and replication competent nature of the central nervous system (CNS) reservoir is unclear. Here, we used the intact proviral DNA assay (IPDA) to provide the first quantitative assessment of the intact and defective HIV reservoir in the brain of people with HIV (PWH). METHODS: Total, intact, and defective HIV proviruses were measured in autopsy frontal lobe tissue from viremic (n = 18) or virologically suppressed (n = 12) PWH. Total or intact/defective proviruses were measured by detection of HIV pol or the IPDA, respectively, through use of droplet digital polymerase chain reaction (ddPCR). HIV-seronegative individuals were included as controls (n = 6). RESULTS: Total HIV DNA was present at similar levels in brain tissues from untreated viremic and antiretroviral (ART)-suppressed individuals (median = 22.3 vs 26.2 HIV pol copies/106 cells), reflecting a stable CNS reservoir of HIV that persists despite therapy. Furthermore, 8 of 10 viremic and 6 of 9 virally suppressed PWH also harbored intact proviruses in the CNS (4.63 vs 12.7 intact copies/106 cells). Viral reservoirs in CNS and matched lymphoid tissue were similar in the composition of intact and/or defective proviruses, albeit at lower levels in the brain. Importantly, CNS resident CD68+ myeloid cells in virally suppressed individuals harbored HIV DNA, directly showing the presence of a CNS resident HIV reservoir. INTERPRETATION: Our results demonstrate the first evidence for an intact, potentially replication competent HIV reservoir in the CNS of virally suppressed PWH. ANN NEUROL 2022;92:532-544.


Subject(s)
HIV Infections , Proviruses , Anti-Retroviral Agents/therapeutic use , Brain , CD4-Positive T-Lymphocytes , DNA, Viral/genetics , DNA, Viral/therapeutic use , HIV Infections/drug therapy , Humans , Proviruses/genetics , Viral Load/methods
17.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35714200

ABSTRACT

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Subject(s)
Cytomegalovirus Vaccines , MicroRNAs , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , Cytomegalovirus/genetics , Epitopes , Macaca mulatta , Major Histocompatibility Complex , Myeloid Cells , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics , Tropism , Vaccine Efficacy
18.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35447093

ABSTRACT

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Subject(s)
HIV Infections , Nucleic Acids , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4-Positive T-Lymphocytes , DNA Viruses , Immunosuppression Therapy , Macaca mulatta , Macrophages , Simian Immunodeficiency Virus/physiology , Viral Load
19.
PLoS Pathog ; 18(4): e1009990, 2022 04.
Article in English | MEDLINE | ID: mdl-35395058

ABSTRACT

Syrian golden hamsters exhibit features of severe disease after SARS-CoV-2 WA1/2020 challenge and are therefore useful models of COVID-19 pathogenesis and prevention with vaccines. Recent studies have shown that SARS-CoV-2 infection stimulates type I interferon, myeloid, and inflammatory signatures similar to human disease and that weight loss can be prevented with vaccines. However, the impact of vaccination on transcriptional programs associated with COVID-19 pathogenesis and protective adaptive immune responses is unknown. Here we show that SARS-CoV-2 WA1/2020 challenge in hamsters stimulates myeloid and inflammatory programs as well as signatures of complement and thrombosis associated with human COVID-19. Notably, immunization with Ad26.COV2.S, an adenovirus serotype 26 vector (Ad26)-based vaccine expressing a stabilized SARS-CoV-2 spike protein, prevents the upregulation of these pathways, such that the mRNA expression profiles of vaccinated hamsters are comparable to uninfected animals. Using proteomics profiling, we validated these findings in rhesus macaques challenged with SARS-CoV-2 WA1/2020 or SARS-CoV-2 B.1.351. Finally, we show that Ad26.COV2.S vaccination induces T and B cell signatures that correlate with binding and neutralizing antibody responses weeks following vaccination. These data provide insights into the molecular mechanisms of Ad26.COV2.S protection against severe COVID-19 in animal models.


Subject(s)
COVID-19 , Thrombosis , Ad26COVS1 , Animals , Antibodies, Neutralizing , COVID-19 Vaccines , Cricetinae , Humans , Inflammation , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Up-Regulation
20.
J Int AIDS Soc ; 25(4): e25895, 2022 04.
Article in English | MEDLINE | ID: mdl-35441468

ABSTRACT

INTRODUCTION: HIV reservoirs and infected cells may persist in tissues with low concentrations of antiretrovirals (ARVs). Traditional pharmacology methods cannot assess variability in ARV concentrations within morphologically complex tissues, such as lymph nodes (LNs). We evaluated the distribution of six ARVs into LNs and the proximity of these ARVs to CD4+ T cells and cell-associated RT-SHIV viral RNA. METHODS: Between December 2014 and April 2017, RT-SHIV infected (SHIV+; N = 6) and healthy (SHIV-; N = 6) male rhesus macaques received two selected four-drug combinations of six ARVs over 10 days to attain steady-state conditions. Serial cryosections of axillary LN were analysed by a multimodal imaging approach that combined mass spectrometry imaging (MSI) for ARV disposition, RNAscope in situ hybridization for viral RNA (vRNA) and immunohistochemistry for CD4+ T cell and collagen expression. Spatial relationships across these four imaging domains were investigated by nearest neighbour search on co-registered images using MATLAB. RESULTS: Through MSI, ARV-dependent, heterogeneous concentrations were observed in different morphological LN regions, such as the follicles and medullary sinuses. After 5-6 weeks of infection, more limited ARV penetration into LN tissue relative to the blood marker heme was found in SHIV+ animals (SHIV+: 0.7 [0.2-1.4] mm; SHIV-: 1.3 [0.5-1.7] mm), suggesting alterations in the microcirculation. However, we found no detectable increase in collagen deposition. Regimen-wide maps of composite ARV distribution indicated that up to 27% of SHIV+ LN tissue area was not exposed to detectable ARVs. Regions associated with B cell follicles had median 1.15 [0.94-2.69] -fold reduction in areas with measurable drug, though differences were only statistically significant for tenofovir (p = 0.03). Median co-localization of drug with CD4+ target cells and vRNA varied widely by ARV (5.1-100%), but nearest neighbour analysis indicated that up to 10% of target cells and cell-associated vRNA were not directly contiguous to at least one drug at concentrations greater than the IC50 value. CONCLUSIONS: Our investigation of the spatial distributions of drug, virus and target cells underscores the influence of location and microenvironment within LN, where a small population of T cells may remain vulnerable to infection and low-level viral replication during suppressive ART.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/therapeutic use , Collagen/therapeutic use , HIV Infections/drug therapy , Humans , Lymph Nodes/metabolism , Macaca mulatta/genetics , Macaca mulatta/metabolism , Male , RNA, Viral/genetics , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...