Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Sci Total Environ ; 912: 169437, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38128671

ABSTRACT

This work aims to increase the efficiency of an activated carbon produced from brewery waste (AC) in the removal of three target antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and ciprofloxacin (CIP)) by surface incorporation of oxygen, nitrogen or sulfur groups. AC was produced using spent brewery grains (the most abundant waste from the brewing industry) as raw material, K2CO3 as activating agent and microwave energy for pyrolysis. Then, seven different functionalized AC were prepared, characterized for their physicochemical properties, and tested for adsorption (%) of SMX, TMP and CIP from three different matrices (ultrapure water (pH ~5-6), buffered ultrapure water (pH 8), and effluent from a municipal wastewater treatment plant (WWTP effluent (pH 8)), under batch operation. Based on the obtained results, an oxygen functionalized AC was selected for further characterization and studies on the adsorption of the target antibiotics from the WWTP effluent. Kinetic results fitted the pseudo-second order model and the equilibrium isotherms were adequately described by the Langmuir model, reaching maximum adsorption capacities (qm) of 124 ± 1 µmol g-1, 315 ± 2 µmol g-1 and 201 ± 5 µmol g-1 for SMX, TMP and CIP, respectively. The selected functionalization increased qm by up to 58 % in comparison with the non-functionalized AC. The oxygen modified AC produced from a biomass waste remarkably improved its performance for an efficient application in the removal of antibiotics from wastewater.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Anti-Bacterial Agents/chemistry , Wastewater , Charcoal/chemistry , Water Pollutants, Chemical/analysis , Sulfamethoxazole/chemistry , Trimethoprim , Ciprofloxacin , Adsorption , Kinetics , Water , Oxygen , Hydrogen-Ion Concentration
2.
Environ Pollut ; 324: 121070, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36641066

ABSTRACT

The impact of pharmaceuticals on marine invertebrates has been a topic of rising concern, with an increasing number of studies regarding the impacts on bivalves. However, very few investigated the toxicity of mixtures of pharmaceuticals. This knowledge gap was investigated in the present study, where the toxicity of 17α-ethinylestradiol (EE2) and salicylic acid (SA) mixture was evaluated. To this end, Mytilus galloprovincialis mussels were chronically subjected to both pharmaceuticals, acting alone and in combination, and the effects at the cellular level were measured. The Independent Action (IA) model was performed aiming to compare obtained with predicted responses. The integrated biomarker response (IBR) index was used to assess the overall biochemical response given by mussels. The results obtained revealed that the most stressful condition was caused by the combined effect of EE2 and SA, with the highest metabolic capacity, antioxidant (catalase activity) and biotransformation (carboxylesterases activity) activation and cellular damage in organisms exposed to the mixture of both drugs in comparison to responses observed when each drug was acting alone. Predicted responses obtained from the IA model indicate that caution should be paid as frequent deviations to observed responses were found. This study highlights the need for future studies considering the mixture of pollutants, mimicking the actual environmental conditions.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Mytilus/metabolism , Salicylic Acid/toxicity , Ethinyl Estradiol/metabolism , Water Pollutants, Chemical/analysis , Antioxidants/metabolism , Oxidative Stress , Biomarkers/metabolism , Pharmaceutical Preparations/metabolism
3.
J Hazard Mater ; 443(Pt B): 130258, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36351346

ABSTRACT

Pharmaceuticals are able to evade conventional wastewater treatments and therefore, are recurrently found in the environment with proven potential to cause harm to human and wildlife. Adsorption onto activated carbon (AC) is a promising complement. However, AC production from non-renewable resources and its difficult after-use recuperation are prohibitive. Hence, a waste-based magnetic activated carbon (MAC) was produced from paper mill sludge, via an ex-situ synthesis, for the adsorptive removal of carbamazepine (CBZ), sulfamethoxazole (SMX) and ibuprofen (IBU) from ultrapure water and wastewater. The MAC was obtained through the promotion of electrostatic interactions between magnetic and activated carbon particles in a water suspension at controlled pH between the points of zero charge of both surfaces. The optimized condition (MACX3) presented remarkable properties regarding specific surface area (SBET=795 m2 g-1) and saturation magnetization (MS=19 emu g-1). Kinetic and equilibrium adsorption studies were performed under batch conditions. Adsorption equilibrium was reached in up to 30 min for all pharmaceuticals in both matrices, proving the low dependence on the adsorbate and the broad applicability of MACX3 in pharmaceutical adsorption. Regarding equilibrium experiments, high Langmuir maximum adsorption capacities (qm) were achieved in ultrapure water (up to 711 ± 40 µmol g-1). Equilibrium studies in wastewater revealed a decay in qm when compared to ultrapure water: 28% for CBZ (468 ± 20 µmol g-1 (111 ± 5 mg g-1)), 78% for SMX (145 ± 10 µmol g-1 (37 ± 3 mg g-1)) and 62% for IBU (273 ± 8 µmol g-1 (56 ± 2 mg g-1)), attributed to the wastewater pH, which dictates the speciation of the pharmaceuticals and controls electrostatic interactions between pharmaceuticals and MAC, and to competition effects by organic matter. It was demonstrated the promising applicability of a waste-based ex-situ MAC, rapidly retrievable from water, as an alternative tertiary wastewater treatment for pharmaceuticals removal.


Subject(s)
Charcoal , Wastewater , Humans , Adsorption , Sulfamethoxazole , Carbamazepine , Water , Ibuprofen , Pharmaceutical Preparations , Magnetic Phenomena
4.
J Environ Manage ; 313: 115030, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35417811

ABSTRACT

In the present study, waste-based biochar functionalized with titanium dioxide (TiO2) and afterwards magnetized by an ex-situ approach, defined as synthetic photosensitizer (SPS), was explored for the photocatalytic degradation of sulfadiazine (SDZ), an antibiotic widely used in the aquaculture industry, under solar irradiation. The use of the SPS enhanced the photodegradation efficiency, with a half-life time (t1/2) reduction from 12.2 ± 0.1 h (without SPS) to 5.6 ± 0.4 h. The applied magnetization procedure allowed to obtain a SPS with good reusability for SDZ photodegradation even after five consecutive cycles. To evaluate the effects on marine bivalves of SDZ, before and after photodegradation and in presence or absence of the SPS, a typical bioindicator species, the mussel Mytilus galloprovincialis, was used and different biochemical markers were analysed. Results obtained indicated that the exposure to SDZbefore irradiation, both in absence and presence of SPS, caused an increase in mussels' metabolism and defence mechanisms, evidencing great biochemical impacts. However, after irradiation (in the absence and presence of SPS), biochemical responses were similar to those observed in organisms exposed to control conditions, without SDZ. Therefore, this work provided a promising eco-friendly treatment for the removal of SDZ from aquaculture effluents.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Carbon , Magnetic Phenomena , Mytilus/metabolism , Photolysis , Sulfadiazine , Titanium , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 431: 128556, 2022 06 05.
Article in English | MEDLINE | ID: mdl-35255334

ABSTRACT

This study aimed at optimizing the one-step chemical activation and microwave pyrolysis of an agro-industrial waste to obtain a microporous activated carbon (AC) with superior textural and adsorptive properties by a fast, low-reagent and low-energy process. Spent brewery grains were used as precursor, and the antibiotics sulfamethoxazole (SMX), trimethoprim (TMP) and ciprofloxacin (CIP) were considered as target adsorbates. A fractional factorial design was applied to evaluate the effect of the main factors affecting the preparation of AC (activating agent, activating agent:precursor ratio, pyrolysis temperature and residence time) on relevant responses. Under optimized conditions (K2CO3 activation, pyrolysis at 800 °C during 20 min and a K2CO3:precursor ratio of 1:2), a microporous AC with specific surface area of 1405 m2 g-1 and large adsorption of target antibiotics (82-94%) was obtained and selected for further studies. Equilibrium times up to 60 min and maximum Langmuir adsorption capacities of 859 µmol g-1 (SMX), 790 µmol g-1 (TMP) and 621 µmol g-1 (CIP) were obtained. The excellent textural and adsorptive properties of the selected material were achieved with a very fast pyrolysis and low load of activating agent, highlighting the importance of optimization studies to decrease the environmental and economic impact of waste-based AC.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Charcoal/chemistry , Kinetics , Microwaves , Pyrolysis , Sulfamethoxazole/chemistry , Trimethoprim , Water , Water Pollutants, Chemical/chemistry
6.
Sci Total Environ ; 824: 153591, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35122849

ABSTRACT

In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 µg/L) and the antihistamine cetirizine (CTZ, 0.6 µg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Carbamazepine/metabolism , Hydrogen-Ion Concentration , Oxidative Stress , Pharmaceutical Preparations/metabolism , Seawater/chemistry , Water Pollutants, Chemical/analysis
7.
Aquat Toxicol ; 244: 106078, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35074615

ABSTRACT

The presence of pharmaceuticals in the aquatic environment is an ongoing concern. However, the information regarding their effects under different climate change scenarios is still scarce. 17α-ethinylestradiol (EE2) is widely present in different aquatic systems showing negative impacts on aquatic organisms even when present at trace concentrations (≈1 ng/L). Nevertheless, its impact on bivalves is poorly understood, especially considering the influence of climate change factors. This study aimed to assess the toxicological impacts of EE2 under current and predicted warming scenarios, in the edible clam Ruditapes philippinarum. For this, clams were exposed for 28 days to different EE2 concentrations (5, 25, 125, 625 ng/L), under two temperatures (17 °C (control) and 21 °C). Drug concentrations, bioconcentration factors and biochemical parameters, related to oxidative stress and energy metabolism, were evaluated. Results showed that under actual and predicted temperature scenarios EE2 concentrations led to a disturbance in redox homeostasis of the clams, characterized by an increase in oxidized glutathione in contaminated organisms compared to control ones. Nevertheless, clams were capable to cope with the stressful conditions, activating their defence mechanisms (especially at the highest exposure concentration and in particular at increased temperature), and no oxidative damage occured. Although limited effects were observed, the present findings indicate that under both temperatures contaminated clams altered their biochemical performance, which can impair their sensitivity and protection capacity to respond to other environmental changes and/or affect their capacity to grow and reproduce. The results presented here highlight the need for further research on this thematic, considering that climate change is an ongoing problem, and the levels of some pharmaceutical drugs will continue to increase in marine/estuarine environments.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Estrogens/toxicity , Ethinyl Estradiol/toxicity , Oxidation-Reduction , Oxidative Stress , Water Pollutants, Chemical/toxicity
8.
Sci Total Environ ; 806(Pt 1): 150369, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34571231

ABSTRACT

In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 µg/L) and the antihistamine cetirizine (CTZ, 0.6 µg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.


Subject(s)
Bivalvia , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Anticonvulsants , Biomarkers/metabolism , Bivalvia/metabolism , Histamine Antagonists , Oxidative Stress , Salinity , Water Pollutants, Chemical/toxicity
9.
Toxics ; 9(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34941763

ABSTRACT

In this work, carbon dots (CD) were synthesized and coupled to titanium dioxide (TiO2) to improve the photodegradation of antibiotics in aquaculture effluents under solar irradiation. Oxolinic acid (OXA) and sulfadiazine (SDZ), which are widely used in aquaculture, were used as target antibiotics. To prepare nanocomposites of CD containing TiO2, two modes were used: in-situ (CD@TiO2) and ex-situ (CD/TiO2). For CD synthesis, citric acid and glycerol were used, while for TiO2 synthesis, titanium butoxide was the precursor. In ultrapure water (UW), CD@TiO2 and CD/TiO2 showed the largest photocatalytic effect for SDZ and OXA, respectively. Compared with their absence, the presence of CD@TiO2 increased the photodegradation of SDZ from 23 to 97% (after 4 h irradiation), whereas CD/TiO2 increased the OXA photodegradation from 22 to 59% (after 1 h irradiation). Meanwhile, in synthetic sea salts (SSS, 30‱, simulating marine aquaculture effluents), CD@TiO2 allowed for the reduction of SDZ's half-life time (t1/2) from 14.5 ± 0.7 h (in absence of photocatalyst) to 0.38 ± 0.04 h. Concerning OXA in SSS, the t1/2 remained the same either in the absence of a photocatalyst or in the presence of CD/TiO2 (3.5 ± 0.3 h and 3.9 ± 0.4 h, respectively). Overall, this study provided novel perspectives on the use of eco-friendly CD-TiO2 nanocomposites for the removal of antibiotics from aquaculture effluents using solar radiation.

10.
J Environ Manage ; 294: 112937, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34119993

ABSTRACT

Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO2) composite materials on the photodegradation of two antibiotics widely used in aquaculture (sulfadiazine (SDZ) and oxolinic acid (OXA)) was assessed. Four materials were synthesized: BCMag (magnetized BC), BCMag_TiO2 (BCMag functionalized with TiO2), BC_TiO2_MagIn and BC_TiO2_MagEx (BC functionalized with TiO2 and afterwards magnetized by in-situ and ex-situ approaches, respectively). SDZ half-life time (t1/2) noticeably decreased 3.9 and 3.4 times in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively. In the case of OXA, even though differences were not so substantial, the produced photocatalysts also allowed for a decrease in t1/2 (2.6 and 1.7 times, in presence of BCMag_TiO2 and BC_TiO2_MagEx, respectively). Overall, the here synthesized BC/TiO2 magnetic nanocomposites through a circular economy process are promising photocatalysts for a sustainable solar-driven removal of antibiotics from aquaculture effluents.


Subject(s)
Anti-Bacterial Agents , Nanocomposites , Aquaculture , Catalysis , Charcoal , Sunlight , Titanium
11.
Environ Toxicol Pharmacol ; 86: 103661, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33878451

ABSTRACT

A vast literature has already demonstrated that pharmaceutical drugs exert negative impacts on aquatic organisms but data is sparse on the occurrence of these contaminants in marine aquatic environments and their biota, particularly in comparison with freshwater systems. In marine environments, bivalves are known as good bioindicator species for environmental pollution monitoring. This review summarizes the current knowledge on carbamazepine (CBZ) concentrations in the marine environment (seawater and bivalves) and the analytical methods involved in the drug determination. Carbamazepine was chosen based on its ubiquitous occurrence and proven negative impacts on the aquatic organisms. Overall, CBZ is distributed in the marine environment with concentrations up to ∼ 1 µg/L, revealing its stability and high persistence. Also, CBZ was found in some species of marine bivalves, with concentrations up to 13 ng/g dry weight (DW), however, a bioaccumulation factor could not be calculated due to the absence of CBZ determination in seawater samples for most of the studies. CAPSULE: Carbamazepine is found in seawater up to the low µg/L level, and in bivalve tissue up to a few ng/g DW, with SPE and LC as the techniques of choice for drug extraction and identification.


Subject(s)
Anticonvulsants/analysis , Bivalvia/chemistry , Carbamazepine/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring
12.
Chemosphere ; 271: 129775, 2021 May.
Article in English | MEDLINE | ID: mdl-33736227

ABSTRACT

In the marine environment, organisms are exposed to a high and increasing number of different contaminants that can interact among them. In addition, abiotic factors can change the dynamics between contaminants and organisms, thus increasing or even decreasing the toxic effect of a particular compound. In this study, the effects of caffeine (CAF) and functionalized multi-walled carbon nanotubes (f-MWCNTs) induced in the clam Ruditapes philippinarum were evaluated, acting alone and in combination (MIX), under two temperature levels (18 and 21 °C). To assess the impact of such compounds, their interaction and the possible influence of temperature, biochemical and histopathological markers were investigated. The effects of f-MWCNTs and caffeine appear to be clearly negative at the control temperature, with lower protein content in contaminated clams and a significant decrease in their metabolism when both pollutants were acting in combination. Also, at control temperature, clams exposed to pollutants showed increased antioxidant capacity, especially when caffeine was acting alone, although cellular damages were still observed at CAF and f-MWCNTs treatments. Increased biotransformation capacity at 18 °C and MIX treatment may explain lower caffeine concentration observed. At increased temperature differences among treatments were not so evident as at 18 °C, with a similar biological pattern among contaminated and control clams. Higher caffeine accumulation at MIX treatment under warming conditions may result from clams' inefficient biotransformation capacity when exposed to increased temperatures.


Subject(s)
Bivalvia , Nanotubes, Carbon , Water Pollutants, Chemical , Animals , Caffeine/toxicity , Nanotubes, Carbon/toxicity , Oxidative Stress , Temperature , Water Pollutants, Chemical/toxicity
13.
Environ Res ; 195: 110755, 2021 04.
Article in English | MEDLINE | ID: mdl-33556353

ABSTRACT

Nowadays, multi-walled carbon nanotubes are considered to be emerging contaminants and their impact in ecosystem has drawn special research attention, while other contaminants, such as caffeine, have more coverage in literature. Despite this, the effects of a combination of the two has yet to be evaluated, especially considering predicted temperature rise. In the present study a typical bioindicator species for marine environment, the clam Ruditapes decussatus, and classical tools, such as biomarkers and histopathological indices, were used to shed light on the species' response to these contaminants, under actual and predicted warming scenarios. The results obtained showed that both contaminants have a harmful effect at tissue level, as shown by higher histopathological index, especially in digestive tubules. Temperatures seemed to induce greater biochemical impacts than caffeine (CAF) and -COOH functionalized multi-walled carbon nanotubes (f-MWCNTs) when acting alone, namely in terms of antioxidant defences and energy reserves content, which were exacerbated when both contaminants were acting in combination (MIX treatment). Overall, the present findings highlight the complex response of clams to both pollutants, evidencing the role of temperature on clams' sensitivity, especially to mixture of pollutants.


Subject(s)
Bivalvia , Nanotubes, Carbon , Water Pollutants, Chemical , Animals , Caffeine/toxicity , Ecosystem , Nanotubes, Carbon/toxicity , Oxidative Stress , Temperature , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499098

ABSTRACT

In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22-27 emu g-1), and their high SBET (741-795 m2 g-1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L-1).

15.
Anal Bioanal Chem ; 413(7): 1851-1859, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33469709

ABSTRACT

In this work, a liquid-liquid microextraction methodology using solidified floating organic drop (SFODME) was combined with liquid chromatography and UV/Vis detection to determine non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (NPX), diclofenac (DCF), and mefenamic acid (MFN) in tap water, surface water, and seawater samples. Parameters that can influence the efficiency of the process were evaluated, such as the type and volume of the extractor and dispersive solvents, effect of pH, agitation type, and ionic strength. The optimized method showed low detection limits (0.09 to 0.25 µg L-1), satisfactory recovery rates (90 to 116%), and enrichment factors in the range between 149 and 199. SFODME showed simplicity, low cost, speed, and high concentration capacity of the analytes under study. Its use in real samples did not demonstrate a matrix effect that would compromise the effectiveness of the method, being possible to apply it successfully in water samples with different characteristics.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Chemistry, Organic/methods , Diclofenac/analysis , Dodecanol/analysis , Hydrogen-Ion Concentration , Ions , Limit of Detection , Linear Models , Mefenamic Acid/analysis , Methanol , Naproxen/analysis , Osmolar Concentration , Pharmaceutical Preparations/analysis , Reproducibility of Results , Seawater , Solvents , Temperature , Water/analysis , Water Pollutants, Chemical/analysis
16.
Sci Total Environ ; 764: 144291, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33401048

ABSTRACT

This work aims to compare the performance of the continuous operation (CO) and intermittent operation (IO) of upflow anaerobic sludge blanket (UASB) reactors for the removal of estrone (E1) and 17α-ethinylestradiol (EE2) from wastewaters. Results suggest that the IO contribute to the improvement of the overall removal of estrogens (above 95% for E1 and EE2) when compared to CO (49% for E1 and 39% for EE2). For both CO and IO, biodegradation was the main removal mechanism for E1, while for EE2, adsorption to sludge was the major removal pathway. Moreover, a higher biodegradation of estrogens was obtained with the IO compared to CO (69.4% vs. 43.3% for E1 and 21.8% vs. 8.0% for EE2). The favourable effect of IO can be justified by effluent recirculation during the feedless period which promotes the adaptation of microbial biomass to estrogens' biodegradation.


Subject(s)
Estrone , Sewage , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Estrogens , Ethinyl Estradiol , Waste Disposal, Fluid , Wastewater
17.
Sci Total Environ ; 752: 141662, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32889260

ABSTRACT

This work aimed at the microwave-assisted production of activated carbon (AC) from primary paper mill sludge (PS) for the adsorption of antibiotics from water. Production conditions, namely pyrolysis temperature, pyrolysis time and activating agent (KOH):PS ratio, were optimized as a function of product yield, specific surface area (SBET), total organic carbon (TOC) content and adsorptive removal percentage of two target antibiotics (amoxicillin (AMX) and sulfamethoxazole (SMX)). Under the optimized conditions (pyrolysis at 800 °C during 20 min and a KOH:PS ratio of 1:5), a microporous AC (MW800-20-1:5, with SBET = 1196 m2 g-1, TOC = 56.2% and removal of AMX and SMX = 85% and 72%, respectively) was produced and selected for further kinetic and equilibrium adsorption studies. The obtained results were properly described by the Elovich reaction-based kinetic model and the Langmuir equilibrium isotherm, with maximum adsorption capacities of 204 ± 5 mg g-1 and 217 ± 8 mg g-1 for AMX and SMX, respectively. Considering the satisfactory comparison of these results with the performance of commercial and alternative AC produced by conventional pyrolysis, this work demonstrated the feasibility of the microwave-assisted production of environmentally and energetically sustainable waste-based AC to be applied in the efficient removal of antibiotics from water.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Kinetics , Microwaves , Water , Water Pollutants, Chemical/analysis
18.
Rev Environ Contam Toxicol ; 254: 163-181, 2021.
Article in English | MEDLINE | ID: mdl-32926215

ABSTRACT

Carbamazepine (CBZ) is among the ten most frequent pharmaceuticals that occur in the aquatic systems, with known effects on inhabiting organisms, including bivalves. Bivalves are important species in coastal ecosystems, often exhibiting a dominant biomass within invertebrate communities. These organisms play a major role in the functioning of the ecosystem and particularly in food webs (as suspension-feeders) and represent a significant fraction of the fisheries resource. They also have strong interactions with the environment, water and sediment and are considered good bioindicator species. The present paper reviews the known literature on the impacts of CBZ in biological endpoints of marine bivalves exposed to environmentally and non-environmentally relevant concentrations, highlighting differences in terms of biological responses, associated with exposure period, concentrations tested, and species used. Overall, the literature available showed that CBZ induces individual and sub-individual effects in marine bivalves (adults and life stages) and the most common effect reported was the induction of oxidative stress.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Carbamazepine/toxicity , Ecosystem , Oxidative Stress , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
Environ Sci Pollut Res Int ; 28(15): 18314-18327, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32474779

ABSTRACT

The main goal of this work was to produce an easily recoverable waste-based magnetic activated carbon (MAC) for an efficient removal of the antiepileptic pharmaceutical carbamazepine (CBZ) from wastewater. For this purpose, the synthesis procedure was optimized and a material (MAC4) providing immediate recuperation from solution, remarkable adsorptive performance and relevant properties (specific surface area of 551 m2 g-1 and saturation magnetization of 39.84 emu g-1) was selected for further CBZ kinetic and equilibrium adsorption studies. MAC4 presented fast CBZ adsorption rates and short equilibrium times (< 30-45 min) in both ultrapure water and wastewater. Equilibrium studies showed that MAC4 attained maximum adsorption capacities (qm) of 68 ± 4 mg g-1 in ultrapure water and 60 ± 3 mg g-1 in wastewater, suggesting no significant interference of the aqueous matrix in the adsorption process. Overall, this work provides evidence of potential application of a waste-based MAC in the tertiary treatment of wastewaters. Graphical abstract.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Carbamazepine/analysis , Charcoal , Iron , Magnetic Phenomena , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
20.
Aquat Toxicol ; 230: 105673, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33221665

ABSTRACT

The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam's metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and protein carbonylation levels), especially when both drugs were combined. This may result from clam's defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems.


Subject(s)
Anticonvulsants/toxicity , Bivalvia/drug effects , Histamine Antagonists/toxicity , Oxidative Stress/drug effects , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Climate Change , Drug Interactions , Models, Theoretical , Oceans and Seas , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...