Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 35: 106914, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33786343

ABSTRACT

The energy available in a microgrid that is powered by solar energy is tightly related to the weather conditions at the moment of generation. A very short-term forecast of solar irradiance provides the microgrid with the capability of automatically controlling the dispatch of energy. We propose a dataset to forecast Global Solar Irradiance (GSI) using a data acquisition system (DAQ) that simultaneously records sky imaging and GSI measurements, with the objective of extracting features from clouds and use them to forecast the power produced by a Photovoltaic (PV) system. The DAQ system is nicknamed the Girasol Machine (Girasol means Sunflower in Spanish). The sky imaging system consists of a longwave infrared (IR) camera and a visible (VI) light camera with a fisheye lens attached to it. The cameras are installed inside a weatherproof enclosure that it is mounted on a solar tracker. The tracker updates its pan and tilt every second using a solar position algorithm to maintain the Sun in the center of the IR and VI images. A pyranometer is situated on a horizontal mount next to the DAQ system to measure GSI. The dataset, composed of IR images, VI images, GSI measurements, and the Sun's positions, has been tagged with timestamps.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1336-1349, 2021.
Article in English | MEDLINE | ID: mdl-31603792

ABSTRACT

In order to successfully predict a proteins function throughout its trajectory, in addition to uncovering changes in its conformational state, it is necessary to employ techniques that maintain its 3D information while performing at scale. We extend a protein representation that encodes secondary and tertiary structure into fix-sized, color images, and a neural network architecture (called GEM-net) that leverages our encoded representation. We show the applicability of our method in two ways: (1) performing protein function prediction, hitting accuracy between 78 and 83 percent, and (2) visualizing and detecting conformational changes in protein trajectories during molecular dynamics simulations.


Subject(s)
Computational Biology/methods , Computer Graphics , Image Processing, Computer-Assisted/methods , Protein Conformation , Proteins/chemistry , Molecular Dynamics Simulation , Neural Networks, Computer
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1988-1991, 2020 07.
Article in English | MEDLINE | ID: mdl-33018393

ABSTRACT

In this work, we demonstrate a novel approach to assessing the risk of Diabetic Peripheral Neuropathy (DPN) using only the retinal images of the patients. Our methodology consists of convolutional neural network feature extraction, dimensionality reduction and feature selection with random projections, combination of image features to case-level representations, and the training and testing of a support vector machine classifier. Using clinical diagnosis as ground truth for DPN, we achieve an overall accuracy of 89% on a held-out test set, with sensitivity reaching 78% and specificity reaching 95%.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Diabetic Neuropathies/diagnosis , Fundus Oculi , Humans , Machine Learning , Photography , Risk Assessment
4.
Philos Trans A Math Phys Eng Sci ; 378(2166): 20190063, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31955686

ABSTRACT

This paper presents the survey of three algorithms to transform atomic-level molecular snapshots from molecular dynamics (MD) simulations into metadata representations that are suitable for in situ analytics based on machine learning methods. MD simulations studying the classical time evolution of a molecular system at atomic resolution are widely recognized in the fields of chemistry, material sciences, molecular biology and drug design; these simulations are one of the most common simulations on supercomputers. Next-generation supercomputers will have a dramatically higher performance than current systems, generating more data that needs to be analysed (e.g. in terms of number and length of MD trajectories). In the future, the coordination of data generation and analysis can no longer rely on manual, centralized analysis traditionally performed after the simulation is completed or on current data representations that have been defined for traditional visualization tools. Powerful data preparation phases (i.e. phases in which original row data is transformed to concise and still meaningful representations) will need to proceed data analysis phases. Here, we discuss three algorithms for transforming traditionally used molecular representations into concise and meaningful metadata representations. The transformations can be performed locally. The new metadata can be fed into machine learning methods for runtime in situ analysis of larger MD trajectories supported by high-performance computing. In this paper, we provide an overview of the three algorithms and their use for three different applications: protein-ligand docking in drug design; protein folding simulations; and protein engineering based on analytics of protein functions depending on proteins' three-dimensional structures. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.

5.
J Chem Inf Model ; 51(9): 2047-65, 2011 Sep 26.
Article in English | MEDLINE | ID: mdl-21644546

ABSTRACT

The performances of several two-step scoring approaches for molecular docking were assessed for their ability to predict binding geometries and free energies. Two new scoring functions designed for "step 2 discrimination" were proposed and compared to our CHARMM implementation of the linear interaction energy (LIE) approach using the Generalized-Born with Molecular Volume (GBMV) implicit solvation model. A scoring function S1 was proposed by considering only "interacting" ligand atoms as the "effective size" of the ligand and extended to an empirical regression-based pair potential S2. The S1 and S2 scoring schemes were trained and 5-fold cross-validated on a diverse set of 259 protein-ligand complexes from the Ligand Protein Database (LPDB). The regression-based parameters for S1 and S2 also demonstrated reasonable transferability in the CSARdock 2010 benchmark using a new data set (NRC HiQ) of diverse protein-ligand complexes. The ability of the scoring functions to accurately predict ligand geometry was evaluated by calculating the discriminative power (DP) of the scoring functions to identify native poses. The parameters for the LIE scoring function with the optimal discriminative power (DP) for geometry (step 1 discrimination) were found to be very similar to the best-fit parameters for binding free energy over a large number of protein-ligand complexes (step 2 discrimination). Reasonable performance of the scoring functions in enrichment of active compounds in four different protein target classes established that the parameters for S1 and S2 provided reasonable accuracy and transferability. Additional analysis was performed to definitively separate scoring function performance from molecular weight effects. This analysis included the prediction of ligand binding efficiencies for a subset of the CSARdock NRC HiQ data set where the number of ligand heavy atoms ranged from 17 to 35. This range of ligand heavy atoms is where improved accuracy of predicted ligand efficiencies is most relevant to real-world drug design efforts.


Subject(s)
Proteins/chemistry , Databases, Protein , Ligands , Models, Chemical , Protein Binding , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...