Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Toxicology ; 501: 153714, 2024 01.
Article in English | MEDLINE | ID: mdl-38141718

ABSTRACT

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.


Subject(s)
Carcinogens , DNA Adducts , Carcinogens/metabolism , DNA Adducts/metabolism , Liver , DNA Damage , 2-Acetylaminofluorene/pharmacology , 2-Acetylaminofluorene/toxicity
2.
Food Chem Toxicol ; 168: 113328, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940331

ABSTRACT

7-Methyl-2H-1,5-benzodioxepin-3(4H)-one (Calone®) is used in fragrances to impart a marine note. It is produced industrially at volumes requiring repeated dose and developmental/reproductive toxicology data (OECD TG 422) under European chemicals legislation (i.e., REACH). Additionally, Japanese chemicals legislation requires evaluation of Calone® biodegradability and identification of metabolites in an environmental biodegradation test. 7-Methyl-2H-1,5-benzodioxepin-3-ol (Calol) was the sole metabolite identified following biodegradation and a 28-day repeated dose toxicity study (OECD TG 407) would normally be required to support registration in Japan. The current paper presents results showing no adverse effects in the parental, reproductive, or developmental phases of an OECD TG 422 study following dietary administration of Calone® to rats at targeted doses of up to 1000 mg/kg/day. The No Observed Adverse Effect Level (NOAEL) was the highest administered dose of 791 and 922 mg/kg/day for males and females, respectively. An in vitro metabolism study conducted with rat and human liver microsomes demonstrated that greater than 90% of Calone® was metabolically reduced into Calol, the same metabolite observed in the environmental biodegradation test. Accordingly, the results from the OECD TG 422 study with Calone® are directly applicable to Calol and it would be expected to have the same NOAEL.


Subject(s)
Benzoxepins , Perfume , Animals , Biodegradation, Environmental , Female , Humans , Male , No-Observed-Adverse-Effect Level , Rats
3.
Mutagenesis ; 37(1): 13-23, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35302169

ABSTRACT

BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.


Subject(s)
DNA Damage , Odorants , Animals , Biological Assay/methods , Mammals , Mutagenicity Tests/methods , Mutagens/toxicity
4.
Article in English | MEDLINE | ID: mdl-33170096

ABSTRACT

Intake assessment and hazard profile of chemical substances are the two critical inputs in a safety assessment. Human intake assessment presents challenges that stem either from the absence of data or from numerous sources of variability and uncertainty, which have led regulators to adopt conservative approaches that inevitably overestimate intake. Refinements of intake assessments produce more realistic estimates and help prioritise areas of concern and better direct investment of resources. However, use levels (ULs), which represent the usual added amount of flavourings to food products, are the starting point for refined intake assessments, are data-intensive, and data availability is often a limitation. The work presented here was undertaken to investigate the use level patterns of substances used as flavourings in foods and to develop a systematic tool for data extrapolation based on chemical structure. The available dataset consists of use levels reported through eight industry surveys and hence are representative of industry uses rather than regulatory limits, which are higher by design and not realistic. A systematic statistical analysis was undertaken to determine whether the industry-reported UL data can be used to estimate use levels of flavouring substances belonging to the same chemical group for which such data are not available. Predictive modelling approaches were explored to evaluate relationships in the data and utilised additional variables relevant to technological considerations, such as volatility losses upon heat treatment, and Tanimoto index-based pair-wise structural similarity scores to determine whether more granular similarity information can reduce the within-group variability. The analyses indicated that the use levels of flavouring substances can reasonably be estimated based on the available data using chemical group classifications stratified by food category. Source of uncertainty and limitations are discussed.


Subject(s)
Diet Surveys , Eating , Flavoring Agents/analysis , Food Analysis , Food Contamination/analysis , Flavoring Agents/administration & dosage , Food Safety , Humans
5.
Article in English | MEDLINE | ID: mdl-31585634

ABSTRACT

2,4-Decadienal (E,E-) occurs naturally in foods and is also used as a flavoring ingredient. In vivo micronucleus studies were used to evaluate the potential for 2,4-decadienal to cause genotoxic effects. Male Han Wistar rats were dosed either by intraperitoneal injection or by gavage in two independent studies. The animals (12/group) received 25, 50, or 100 mg/kg bw of 2,4-decadienal via intraperitoneal injection, or 350, 700, or 1400 mg/kg bw via gavage. Dose-dependent decreases in the percentages of peripheral blood reticulocytes were observed in both studies, indicating that the target tissue was exposed to toxic levels of 2,4-decadienal. No induction of micronuclei in the bone marrow polychromatic erythrocytes or the peripheral blood reticulocytes was observed in either study. These results, coupled with previous mutagenicity studies, support the overall conclusion that 2,4-decadienal does not present a concern for genotoxicity.


Subject(s)
Aldehydes/toxicity , Flavoring Agents/toxicity , Administration, Oral , Aldehydes/administration & dosage , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/ultrastructure , Dose-Response Relationship, Drug , Flavoring Agents/administration & dosage , Injections, Intraperitoneal , Male , Micronucleus Tests/methods , Random Allocation , Rats , Rats, Wistar , Reticulocytes/drug effects , Reticulocytes/ultrastructure
6.
Regul Toxicol Pharmacol ; 95: 227-235, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29580972

ABSTRACT

A previously published fragmentation method for making reliable negative in silico predictions has been applied to the problem of predicting skin sensitisation in humans, making use of a dataset of over 2750 chemicals with publicly available skin sensitisation data from 18 in vivo assays. An assay hierarchy was designed to enable the classification of chemicals within this dataset as either sensitisers or non-sensitisers where data from more than one in vivo test was available. The negative prediction approach was validated internally, using a 5-fold cross-validation, and externally, against a proprietary dataset of approximately 1000 chemicals with in vivo reference data shared by members of the pharmaceutical, nutritional, and personal care industries. The negative predictivity for this proprietary dataset was high in all cases (>75%), and the model was also able to identify structural features that resulted in a lower accuracy or a higher uncertainty in the negative prediction, termed misclassified and unclassified features respectively. These features could serve as an aid for further expert assessment of the negative in silico prediction.


Subject(s)
Dermatitis, Allergic Contact , Haptens , Risk Assessment/methods , Animals , Computer Simulation , Databases, Factual , Guinea Pigs , Humans , Mice
7.
Food Chem Toxicol ; 115: 228-243, 2018 May.
Article in English | MEDLINE | ID: mdl-29548853

ABSTRACT

Genotoxicity of flavor and fragrance materials was assessed in Turkey Egg Genotoxicity Assay (TEGA) using 32P-nucleotide postlabeling (NPL) and comet assays to detect hepatic DNA adducts and strand breaks. Twenty materials having results in GADD45a-Gluc 'BlueScreen HC' genotoxicity assay, and standard in vitro and in vivo tests, were selected to evaluate the accuracy of TEGA. Quinoline (QUI) and 2-acetylaminofluorene (AAF) served as positive comparators. Two materials, p-tert-butyldihydrocinnamaldehyde (BDHCA) and methyl eugenol (MEU) produced DNA adducts. BDHCA, p-t-butyl-α-methylhydrocinnamic aldehyde (BMHCA), trans-2-hexenal (HEX) and maltol (MAL) produced DNA strand breaks. Fifteen other materials were negative in both assays. Based on reports of oxidative DNA damage induction by MAL and 4-hydroxy-2.5-dimethyl-3(2H) furanone (HDMF), modified comet assays were conducted. Positive comet findings for MAL were not confirmed, and only equivocal evidence of oxidative damage was found. Accordingly, MAL was judged to have equivocal genotoxicity in TEGA. HDMF was positive in modified comet assay, indicating an ability to produce oxidative DNA damage. TEGA showed modest concordance with results in regulatory in vitro assays. Findings in TEGA, with few exceptions, were concordant with the results of in vivo genotoxicity and carcinogenicity testing. Thus, TEGA is an attractive alternative model for the assessment of genotoxic potential of chemicals in vivo.


Subject(s)
Comet Assay/methods , DNA Damage , Flavoring Agents/toxicity , Perfume/toxicity , Animals , Carcinogenicity Tests , DNA Adducts/metabolism , Eggs , Oxidative Stress/drug effects , Turkeys
8.
J Appl Toxicol ; 37(8): 985-995, 2017 08.
Article in English | MEDLINE | ID: mdl-28244128

ABSTRACT

Dermal contact with chemicals may lead to an inflammatory reaction known as allergic contact dermatitis. Consequently, it is important to assess new and existing chemicals for their skin sensitizing potential and to mitigate exposure accordingly. There is an urgent need to develop quantitative non-animal methods to better predict the potency of potential sensitizers, driven largely by European Union (EU) Regulation 1223/2009, which forbids the use of animal tests for cosmetic ingredients sold in the EU. A Nearest Neighbours in silico model was developed using an in-house dataset of 1096 murine local lymph node (LLNA) studies. The EC3 value (the effective concentration of the test substance producing a threefold increase in the stimulation index compared to controls) of a given chemical was predicted using the weighted average of EC3 values of up to 10 most similar compounds within the same mechanistic space (as defined by activating the same Derek skin sensitization alert). The model was validated using previously unseen internal (n = 45) and external (n = 103) data and accuracy of predictions assessed using a threefold error, fivefold error, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) and Globally Harmonized System of Classification and Labelling of Chemicals (GHS) classifications. In particular, the model predicts the GHS skin sensitization category of compounds well, predicting 64% of chemicals in an external test set within the correct category. Of the remaining chemicals in the previously unseen dataset, 25% were over-predicted (GHS 1A predicted: GHS 1B experimentally) and 11% were under-predicted (GHS 1B predicted: GHS 1A experimentally). Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Dermatitis, Allergic Contact/etiology , Drug-Related Side Effects and Adverse Reactions/etiology , Models, Biological , Pharmaceutical Preparations/chemistry , Animal Use Alternatives , Animals , Computer Simulation , Datasets as Topic , Local Lymph Node Assay , Mice , Predictive Value of Tests , Reproducibility of Results , Structure-Activity Relationship
9.
Toxicol Sci ; 150(2): 301-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26719370

ABSTRACT

Certain alkenylbenzenes (AB), flavoring chemicals naturally occurring in spices and herbs, are established to be cytotoxic and hepatocarcinogenic in rodents. The purpose of the present study was to determine the DNA damaging potential of key representatives of this class using the Turkey Egg Genotoxicity Assay. Medium white turkey eggs with 22- to 24-day-old fetuses received three injections of nine AB with different carcinogenic potentials: safrole (1, 2 mg/egg), methyl eugenol (2, 4 mg/egg), estragole (20, 40 mg/egg), myristicin (25, 50 mg/egg), elemicin (20, 50 mg/egg), anethole (5, 10 mg/egg), methyl isoeugenol (40, 80 mg/egg), eugenol (1, 2.5 mg/egg), and isoeugenol (1, 4 mg/egg). Three hours after the last injection, fetal livers were harvested for measurement of DNA strand breaks, using the comet assay and DNA adducts formation, using the nucleotide(3) (2)P-postlabeling assay. Estragole, myristicin, and elemicin induced DNA stand breaks. These compounds as well as safrole, methyl eugenol and anethole, at the highest doses tested, induced DNA adduct formation. Methyl isoeugenol, eugenol, and isoeugenol did not induce genotoxicity. The genotoxic AB all had the structural features of either a double bond in the alkenyl side chain at the terminal 2',3'-position, favorable to formation of proximate carcinogenic 1'-hydroxymetabolite or terminal epoxide, or the absence of a free phenolic hydroxyl group crucial for formation of a nontoxic glucuronide conjugate. In contrast, methyl isoeugenol, eugenol and isoeugenol, which were nongenotoxic, possessed chemical features, unfavorable to activation.


Subject(s)
Benzene Derivatives , Benzodioxoles , DNA Damage , Flavoring Agents/toxicity , Liver/drug effects , Turkeys , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/toxicity , Benzodioxoles/chemistry , Benzodioxoles/toxicity , Comet Assay , DNA Adducts/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Flavoring Agents/chemistry , Liver/embryology , Liver/metabolism , Liver/pathology , Molecular Structure , Mutagenicity Tests , Structure-Activity Relationship , Turkeys/embryology
10.
Toxicol In Vitro ; 29(7): 1425-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26003925

ABSTRACT

The genotoxicity of a library of 70 flavour and fragrance substances having a high proportion of in vivo and/or carcinogenicity test data has been assessed using the GADD45a-GLuc 'BlueScreen HC' genotoxicity assay, with and without exogenous metabolic activation. There are only limited genotoxicity and carcinogenicity study data for compounds in this applicability domain, but this study allowed the following conclusions: (i) The BlueScreen HC results are highly predictive of positive results from regulator-required in vitro genotoxicity assays for the test set of materials; the moderate negative predictivity of BlueScreen HC from the in vitro test set of material is mainly due to the high rate of false positive in regulatory in vitro mammalian tests. (ii) BlueScreen HC negative results are predictive of negative in vivo results and provide a specific prediction of in vivo genotoxicity assay results. (iii) In this applicability domain, which comprises a large proportion of relatively low molecular weight molecules, a 1mM testing limit maintains the sensitivity of the assay, and increases specificity. (iv) The predictive capacity and specificity to in vivo genotoxins and carcinogens, coupled to a microplate format with low compound requirement supports further investigation of the BlueScreen HC assay as a useful tool in prioritizing the assessment of new F&F materials and in filling data gaps on materials with no or limited regulatory test data for genotoxicity.


Subject(s)
Biological Assay , Flavoring Agents/toxicity , Mutagenicity Tests , Perfume/toxicity , Cell Cycle Proteins/genetics , Cell Line , Decision Making , Genes, Reporter , Humans , Luciferases/genetics , Nuclear Proteins/genetics , Sensitivity and Specificity
11.
Biochemistry ; 50(5): 843-53, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21142015

ABSTRACT

Molecular interactions of odorants with their olfactory receptors (ORs) are of central importance for the ability of the mammalian olfactory system to detect and discriminate a vast variety of odors with a limited set of receptors. How a particular OR binds and distinguishes different odorant molecules remains largely unknown on a structural basis. Here we investigated this question for the mouse eugenol receptor (mOR-EG). By screening a large odorant library, we discovered a wide range of chemical structures activating the receptor in heterologous mammalian cells. Potent agonists comprise (i) benzene, (ii) cyclohexane, or (iii) polycyclic structures substituted with alcohol, aldehyde, keto, ether, or esterified carboxylic groups. To detect those amino acids within the receptor that are in contact with a particular bound odorant molecule, we investigated how distinct mOR-EG point mutants were activated by the different odorant agonists found for the wild-type receptor. We identified 11 amino acids as a part of the receptor's ligand binding pocket. Molecular modeling predicted 10 of these residues in transmembrane helices TM3-TM6 and one in the extracellular loop between TM2 and TM3. These amino acids participate in odorant binding with variable importance depending on the type of odorant, revealing functional "fingerprints" of ligand-receptor interactions.


Subject(s)
Eugenol/chemistry , Receptors, Odorant/chemistry , Amino Acid Sequence , Animals , Binding Sites , Eugenol/metabolism , Ligands , Mice , Molecular Sequence Data , Protein Binding , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
12.
J Biol Chem ; 284(44): 30547-55, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19723634

ABSTRACT

We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.


Subject(s)
Estrogen Receptor alpha/analysis , Odorants , Olfactory Receptor Neurons/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Odorant/metabolism , Drug Evaluation, Preclinical , Estrogen Receptor alpha/metabolism , Gene Expression Regulation , Humans , Receptors, G-Protein-Coupled , Receptors, Odorant/analysis , Santalum/chemistry , Signal Transduction/drug effects , Small Molecule Libraries , Smell , Structure-Activity Relationship , Transcription, Genetic
13.
EMBO J ; 21(7): 1661-72, 2002 Apr 02.
Article in English | MEDLINE | ID: mdl-11927550

ABSTRACT

We characterized Drosophila endophilin A (D-endoA), and generated and analysed D-endoA mutants. Like its mammalian homologue, D-endoA exhibits lysophosphatidic acid acyl transferase activity and contains a functional SH3 domain. D-endoA is recruited to the sites of endocytosis, as revealed by immunocytochemistry of the neuromuscular junction (NMJ) of mutant L3 larvae carrying the temperature-sensitive allele of dynamin, shibire. D-endoA null mutants show severe defects in motility and die at the early L2 larval stage. Mutants with reduced D-endoA levels exhibit a range of defects of synaptic vesicle endocytosis, as observed at L3 larvae NMJs using FM1-43 uptake and electron microscopy. NMJs with an almost complete loss of synaptic vesicles did not show an accumulation of intermediates of the budding process, whereas NMJs with only slightly reduced levels of synaptic vesicles showed a striking increase in early-stage, but not late-stage, budding intermediates at the plasma membrane. Together with results of previous studies, these observations indicate that endophilin A is essential for synaptic vesicle endocytosis, being required from the onset of budding until fission.


Subject(s)
Acyltransferases/metabolism , Drosophila Proteins/metabolism , Neuromuscular Junction/physiology , Synaptic Vesicles/physiology , src Homology Domains , Acyl Coenzyme A/metabolism , Acyltransferases/genetics , Amino Acid Sequence , Animals , Base Sequence , Central Nervous System/metabolism , DNA, Complementary , Drosophila Proteins/genetics , Drosophila melanogaster , Endocytosis , Gene Expression , Lysophospholipids/metabolism , Mice , Molecular Sequence Data , Mutagenesis , Neuromuscular Junction/metabolism , Phenotype , Presynaptic Terminals/metabolism , Sequence Homology, Amino Acid , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...