Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Vaccine ; 36(48): 7345-7352, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30327212

ABSTRACT

We investigated the serotype- and topotype versatility of a replication-deficient human adenovirus serotype 5 vectored foot-and-mouth disease (FMD) vaccine platform (AdtFMD). Sixteen AdtFMD recombinant subunit monovalent vaccines targeting twelve distinct FMD virus (FMDV) serotype/topotypes in FMD Regional Pools I-VII were constructed. The AdtA24 serotype conditionally licensed vaccine served as the basis for vaccine design and target dose for cattle clinical trials. Several vaccines contained an additional RGD motif genetic insertion in the adenovector fiber knob, and/or a full-length 2B gene insertion in the FMDV P1 gene cassette. In 13 of the 22 efficacy studies conducted, naïve control and AdtFMD vaccinated cattle were challenged intradermolingually at 2 weeks post-vaccination using a FMDV strain homologous to the AdtFMD vaccine strain. Each of the 16 AdtFMD vaccines were immunogenic based on the presence of homologous neutralizing antibodies in the serum of approximately 90% of total vaccinates (n = 375) on the day of challenge. Importantly, for 75% of vaccines tested, the effective dose that conferred 100% protection against clinical FMD was identical to or in some cases lower than, the minimum protective dose for the conditionally licensed AdtA24 vaccine formulated with ENABL® adjuvant. Results also confirmed the capability of the AdtFMD vaccine platform to differentiate infected from vaccinated animals (DIVA) across the five FMDV serotypes evaluated. Collectively, this comprehensive set of FMD cattle vaccine dose ranging studies highlights the serotype- and topotype versatility of the AdtFMD vaccine platform for further development, licensure, and application in FMD outbreak control and disease eradication efforts.


Subject(s)
Cattle Diseases/prevention & control , Foot-and-Mouth Disease/prevention & control , Vaccination/veterinary , Viral Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Cattle , Dose-Response Relationship, Drug , Foot-and-Mouth Disease Virus , Genetic Vectors , Serogroup , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/therapeutic use , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/therapeutic use , Viral Vaccines/therapeutic use
2.
BMC Vet Res ; 14(1): 254, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157853

ABSTRACT

BACKGROUND: A direct contact transmission challenge model was used to simulate natural foot-and-mouth disease virus (FMDV) spread from FMDV A24/Cruzeiro/BRA/55 infected 'seeder' steers to naïve or vaccinated steers previously immunized with a replication-deficient human adenovirus-vectored FMDV A24/Cruzeiro/BRA/55 capsid-based subunit vaccine (AdtA24). In two independent vaccine efficacy trials, AdtA24 was administered once intramuscularly in the neck 7 days prior to contact with FMDV A24/Cruzeiro/BRA/55-infected seeder steers. RESULTS: In Efficacy Study 1, we evaluated three doses of AdtA24 to estimate the 50%/90% bovine protective dose (BPD50/90) for prevention of clinical FMD. In vaccinated, contact-challenged steers, the BPD50/90 was 3.1 × 1010 / 5.5 × 1010 AdtA24 particles formulated without adjuvant. In Efficacy Study 2, steers vaccinated with 5 × 1010 AdtA24 particles, exposed to FMDV A24/Cruzeiro/BRA/55-infected seeder steers, did not develop clinical FMD or transmit FMDV to other vaccinated or naïve, non-vaccinated steers. In contrast, naïve, non-vaccinated steers that were subsequently exposed to FMDV A24/Cruzeiro/BRA/55-infected seeder steers developed clinical FMD and transmitted FMDV by contact to additional naïve, non-vaccinated steers. The AdtA24 vaccine differentiated infected from vaccinated animals (DIVA) because no antibodies to FMDV nonstructural proteins were detected prior to FMDV exposure. CONCLUSIONS: A single dose of the AdtA24 non-adjuvanted vaccine conferred protection against clinical FMD at 7 days post-vaccination following direct contact transmission from FMDV-infected, naïve, non-vaccinated steers. The AdtA24 vaccine was effective in preventing FMDV transmission from homologous challenged, contact-exposed, AdtA24-vaccinated, protected steers to co-mingled, susceptible steers, suggesting that the vaccine may be beneficial in reducing both the magnitude and duration of a FMDV outbreak in a commercial cattle production setting.


Subject(s)
Cattle Diseases/prevention & control , Foot-and-Mouth Disease/prevention & control , Viral Vaccines/immunology , Adenoviruses, Human/genetics , Animals , Antibodies, Viral/blood , Capsid Proteins/genetics , Cattle , Cattle Diseases/immunology , Cattle Diseases/virology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/immunology , Male , Serogroup , Vaccination , Vaccines, Subunit/immunology , Viral Nonstructural Proteins/immunology
3.
Vaccine ; 36(8): 1078-1084, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29358056

ABSTRACT

A foot-and-mouth disease (FMD) recombinant subunit vaccine formulated with a lipid/polymer adjuvant was evaluated in two vaccine efficacy challenge studies in steers. The vaccine active ingredient is a replication-deficient human adenovirus serotype 5 vector encoding the FMD virus (FMDV) A24/Cruzeiro/BRA/55 capsid (AdtA24). In the first study, AdtA24 formulated in ENABL® adjuvant was compared to a fourfold higher dose of AdtA24 without adjuvant. Steers vaccinated with AdtA24 + ENABL® adjuvant developed a significantly higher virus neutralizing test (VNT) antibody titer and an improved clinical response following FMDV A24/Cruzeiro/BRA/55 intradermal lingual challenge at 14 days post-vaccination (dpv) than steers vaccinated with the active ingredient alone. In the second study, vaccination with AdtA24 formulated in ENABL® at the same dose used in the first study, followed by FMDV A24/Cruzeiro/BRA/55 challenge on 7 or 14 dpv, prevented clinical FMD in all steers and conferred 90% protection against viremia. In addition, post-challenge FMDV titers in nasal samples from vaccinated steers compared to unvaccinated steers were significantly reduced. In both studies, none of the AdtA24 vaccinated steers developed antibodies to the FMDV non-structural proteins prior to challenge with FMDV, indicative of the capacity to differentiate infected from vaccinated animals (DIVA). These results demonstrate that administration of AdtA24 formulated in ENABL® adjuvant lowered the protective dose and prevented clinical FMD following exposure of vaccinated steers to virulent FMDV at 7 or 14 dpv.


Subject(s)
Adenoviruses, Human/immunology , Adjuvants, Immunologic/administration & dosage , Cattle Diseases/prevention & control , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Vaccine Potency , Viral Vaccines/immunology , Adenoviruses, Human/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cattle , Foot-and-Mouth Disease Virus/genetics , Genetic Vectors , Humans , Serogroup , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viremia/immunology
4.
Malar J ; 16(1): 263, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28673287

ABSTRACT

BACKGROUND: A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. RESULTS: The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. CONCLUSION: These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.


Subject(s)
Adenoviruses, Simian , Genetic Vectors/standards , Malaria Vaccines/immunology , Malaria/prevention & control , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Animals , Antibodies, Viral/blood , Disease Models, Animal , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Ghana/epidemiology , Gorilla gorilla , Humans , Interferon-gamma/blood , Kenya/epidemiology , Malaria/epidemiology , Malaria Vaccines/standards , Mice , Mice, Inbred BALB C , Plasmids , Plasmodium yoelii/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Seroepidemiologic Studies , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Transgenes/immunology , United States/epidemiology
5.
Vaccine ; 34(27): 3214-3220, 2016 06 08.
Article in English | MEDLINE | ID: mdl-26707216

ABSTRACT

The safety and efficacy of an experimental, replication-deficient, human adenovirus-vectored foot-and-mouth disease virus (FMDV) serotype A24 Cruzeiro capsid-based subunit vaccine (AdtA24) was examined in eight independent cattle studies. AdtA24 non-adjuvanted vaccine was administered intramuscularly to a total of 150 steers in doses ranging from approximately 1.0×10(8) to 2.1×10(11) particle units per animal. No detectable local or systemic reactions were observed after vaccination. At 7 days post-vaccination (dpv), vaccinated and control animals were challenged with FMDV serotype A24 Cruzeiro via the intradermal lingual route. Vaccine efficacy was measured by FMDV A24 serum neutralizing titers and by protection from clinical disease and viremia after challenge. The results of eight studies demonstrated a strong correlation between AdtA24 vaccine dose and protection from clinical disease (R(2)=0.97) and viremia (R(2)=0.98). There was also a strong correlation between FMDV A24 neutralization titers on day of challenge and protection from clinical disease (R(2)=0.99). Vaccination with AdtA24 enabled differentiation of infected from vaccinated animals (DIVA) as demonstrated by the absence of antibodies to the FMDV nonstructural proteins in vaccinates prior to challenge. Lack of AdtA24 vaccine shedding after vaccination was indicated by the absence of neutralizing antibody titers to both the adenovector and FMDV A24 Cruzeiro in control animals after co-mingling with vaccinated cattle for three to four weeks. In summary, a non-adjuvanted AdtA24 experimental vaccine was shown to be safe, immunogenic, consistently protected cattle at 7 dpv against direct, homologous FMDV challenge, and enabled differentiation of infected from vaccinated cattle prior to challenge.


Subject(s)
Adenoviridae , Cattle Diseases/prevention & control , Foot-and-Mouth Disease/prevention & control , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Capsid Proteins/immunology , Cattle , Cattle Diseases/virology , Foot-and-Mouth Disease Virus , Male , Neutralization Tests , Serogroup , Vaccines, Subunit/immunology , Viral Nonstructural Proteins/immunology , Virus Shedding
6.
J Virol ; 87(17): 9661-71, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23824800

ABSTRACT

We have generated hexon-modified adenovirus serotype 5 (Ad5) vectors that are not neutralized by Ad5-specific neutralizing antibodies in mice. These vectors are attractive for the advancement of vaccine products because of their potential for inducing robust antigen-specific immune responses in people with prior exposure to Ad5. However, hexon-modified Ad5 vectors displayed an approximate 10-fold growth defect in complementing cells, making potential vaccine costs unacceptably high. Replacing hypervariable regions (HVRs) 1, 2, 4, and 5 with the equivalent HVRs from Ad43 was sufficient to avoid Ad5 preexisting immunity and retain full vaccine potential. However, the resulting vector displayed the same growth defect as the hexon-modified vector carrying all 9 HVRs from Ad43. The growth defect is likely due to a defect in capsid assembly, since DNA replication and late protein accumulation were normal in these vectors. We determined that the hexon-modified vectors have a 32°C cold-sensitive phenotype and selected revertants that restored vector productivity. Genome sequencing identified a single base change resulting in a threonine-to-methionine amino acid substitution at the position equivalent to residue 342 of the wild-type protein. This mutation has a suppressor phenotype (SP), since cloning it into our Ad5 vector containing all nine hypervariable regions from Ad43, Ad5.H(43m-43), increased yields over the version without the SP mutation. This growth improvement was also shown for an Ad5-based hexon-modified vector that carried the hexon hypervariable regions of Ad48, indicating that the SP mutation may have broad applicability for improving the productivity of different hexon-modified vectors.


Subject(s)
Adenoviruses, Human/genetics , Capsid Proteins/genetics , Genetic Vectors , Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , Amino Acid Sequence , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Cytokines/biosynthesis , Female , Genes, Viral , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Sequence Homology, Amino Acid , Suppression, Genetic , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Replication/genetics
7.
Virol J ; 7: 276, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20959004

ABSTRACT

BACKGROUND: Replication-deficient recombinant adenoviral vectors based on human serotype 35 (Ad35) are desirable due to the relatively low prevalence of neutralizing antibodies in the human population. The structure of the viral genome and life cycle of Ad35 differs from the better characterized Ad5 and these differences require differences in the strategies for the generation of vectors for gene delivery. RESULTS: Sequences essential for E1 and E4 function were identified and removed and the effects of the deletions on viral gene transcription were determined. In addition, the non-essential E3 region was deleted from rAd35 vectors and a sequence was found that did not have an effect on viability but reduced viral fitness. The packaging capacity of rAd35 was dependent on pIX and vectors were generated with stable genome sizes of up to 104% of the wild type genome size. These data were used to make an E1-, E3-, E4-deleted rAd35 vector. This rAd35 vector with multiple gene deletions has the advantages of multiple blocks to viral replication (i.e., E1 and E4 deletions) and a transgene packaging capacity of 7.6 Kb, comparable to rAd5 vectors. CONCLUSIONS: The results reported here allow the generation of larger capacity rAd35 vectors and will guide the derivation of adenovirus vectors from other serotypes.


Subject(s)
Adenoviruses, Human/physiology , Genetic Vectors , Transcription, Genetic , Virus Replication , Adenovirus E1 Proteins/genetics , Adenovirus E1 Proteins/physiology , Adenovirus E3 Proteins/genetics , Adenovirus E3 Proteins/physiology , Adenovirus E4 Proteins/genetics , Adenovirus E4 Proteins/physiology , Adenoviruses, Human/genetics , Gene Deletion , Genetic Therapy/methods , Genome, Viral , Humans , Microbial Viability , Virus Assembly
8.
Vaccine ; 28(18): 3201-10, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20188680

ABSTRACT

An effective malaria vaccine remains a global health priority. Recombinant adenoviruses are a promising vaccine platform, and Plasmodium falciparum apical membrane antigen 1 (AMA1) and merozoite surface protein 1-42 (MSP1(42)) are leading blood stage vaccine candidates. We evaluated the importance of surface antigen localization and glycosylation on the immunogenicity of adenovector delivered AMA1 and MSP1(42) and assessed the ability of these vaccines to induce functional antibody responses capable of inhibiting parasite growth in vitro. Adenovector delivery induced unprecedented levels of biologically active antibodies in rabbits as indicated by the parasite growth inhibition assay. These responses were as potent as published results using any other vaccine system, including recombinant protein in adjuvant. The cell surface associated and glycosylated forms of AMA1 and MSP1(42) elicited 99% and 60% inhibition of parasite growth, respectively. Antigens that were expressed at the cell surface and glycosylated were much better than intracellular antigens at inducing antibody responses. Good T cell responses were observed for all forms of AMA1 and MSP1(42). Antigen-specific antibody responses, but typically not T cell responses, were boosted by a second administration of adenovector. These data highlight the importance of rational vaccine design and support the advancement of adenovector delivery technology for a malaria vaccine.


Subject(s)
Adenoviruses, Human/genetics , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Genetic Vectors , Malaria Vaccines/immunology , Membrane Proteins/immunology , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/growth & development , Protozoan Proteins/immunology , Animals , Antigens, Protozoan/genetics , Female , Glycosylation , Immunization, Secondary/methods , Malaria Vaccines/genetics , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Mice , Mice, Inbred BALB C , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Rabbits , T-Lymphocytes/immunology
9.
Mol Biotechnol ; 35(3): 263-73, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17652790

ABSTRACT

Expression of certain transgenes from an adenovirus vector can be deleterious to its own replication. This can result in the inhibition of virus rescue, reduced viral yields, or, in the worst case, make it impossible to construct a vector expressing the inhibiting transgene product. A gene regulation system based on the tet operon was used to allow the rescue and efficient growth of adenovectors that express transgenes to high levels. A key advantage to this system is that repression of transgene expression is mediated by the packaging cell line, thus, expression of regulatory products from the adenovector are not required. This provides a simple, broadly applicable system wherein transgene repression is constitutive during vector rescue and growth and there is no effect on adenovector-mediated expression of gene products in transduced cells. Several high-level expression vectors based on first- and second-generation adenovectors were rescued and produced to high titer that otherwise could not be grown. Yields of adenovectors expressing inhibitory transgene products were increased, and the overgrowth of cultures by adenovectors with nonfunctional expression cassettes was prevented. The gene regulation system is a significant advancement for the development of adenovirus vectors for vaccine and other gene transfer applications.


Subject(s)
Adenoviridae/genetics , Genetic Vectors , Transgenes , Viral Vaccines/genetics , Adenoviridae/physiology , Base Sequence , Cell Line , DNA Primers , DNA, Viral/genetics , DNA, Viral/isolation & purification , Humans , Virus Replication
10.
J Virol ; 76(8): 3670-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11907206

ABSTRACT

Continued improvements of adenoviral vectors require the investigation of novel genome configurations. Since adenovirus can be generated directly by transfecting packaging cell lines with viral genomes isolated from plasmid DNA, it is possible to separate genome construction from virus production. In this way failure to generate a virus is not associated with an inability to generate the desired genome. We have developed a novel lambda-based system that allows rapid modification of the viral genome by double homologous recombination in Escherichia coli. The recombination reaction and newly generated genome may reside in a recombination-deficient bacterial host for enhanced plasmid stability. Furthermore, the process is independent of any restriction endonucleases. The strategy relies on four main steps: (i) homologous recombination between an adenovirus cosmid and a donor plasmid (the donor plasmid carries the desired modification[s] and flanking regions of homology to direct its recombination into the viral genome); (ii) in vivo packaging of the recombinant adenoviral cosmids during a productive lambda infection; (iii) transducing a recombination-deficient E. coli lambda lysogen with the generated lysate (the lysogen inhibits the helper phage used to package the recombinant andenoviral cosmid from productively infecting and destroying the host bacteria); (iv) effectively selecting for the desired double-recombinant cosmid. Approximately 10,000 double-recombinant cosmids are recovered per reaction with essentially all of them being the correct double-recombinant molecule. This system was used to generate quickly and efficiently adenoviral genomes deficient in the E1/E3 and E1/E3/E4 regions. The basis of this technology allows any region of the viral genome to be readily modified for investigation of novel configurations.


Subject(s)
Adenoviridae/genetics , Bacteriophage lambda/genetics , Genetic Vectors , Recombination, Genetic , Adenoviridae/pathogenicity , Adenovirus Early Proteins/genetics , Cell Line , Cosmids , Escherichia coli/virology , Plasmids , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL
...