Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Type of study
Publication year range
1.
J Hazard Mater ; 473: 134628, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795480

ABSTRACT

Methyl isocyanate (MIC) is a toxic chemical found in many commercial, industrial, and agricultural processes, and was the primary chemical involved in the Bhopal, India disaster of 1984. The atmospheric environmental chemical reactivity of MIC is relatively unknown with only proposed reaction channels, mainly involving OH-initiated reactions. The gas-phase degradation reaction pathways of MIC and its primary product, formyl isocyanate (FIC), were investigated with quantum mechanical (QM) calculations to assess the fate of the toxic chemical and its primary transformation products. Transition state energy barriers and reaction energetics were evaluated for thermolysis/pyrolysis-like reactions and bimolecular reactions initiated by relevant radicals (•OH and Cl•) to evaluate the potential energy surfaces and identify the primary reaction pathways and products. Thermolysis/pyrolysis of MIC requires high energy to initiate N-CH3 and C-H bond dissociation and is unlikely to dissociate except under extreme conditions. Bimolecular radical addition and H-abstraction reaction pathways are deemed the most kinetically and thermodynamically favorable mechanisms. The primary transformation products of MIC were identified as FIC, methylcarbamic acid, isocyanic acid (isocyanate radical), and carbon dioxide. The results of this work inform the gas-phase reaction channels of MIC and FIC reactivity and identify transformation products under various reaction conditions.

2.
Chemosphere ; 308(Pt 2): 136351, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36084830

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have become global environmental contaminants due to being notoriously difficult to degrade, and it has become increasingly important to employ suitable PFAS alternatives, especially in aqueous film-forming foams (AFFF). Trimethylsiloxane (TriSil) surfactants are potential fluorine-free replacements for PFAS in fire suppression technologies. Yet because these compounds may be more susceptible to high-temperature decomposition, it is necessary to assess the potential environmental impact of their thermal degradation products. Our study analyzes the high-temperature degradation of a truncated trimethylsiloxane (TriSil-1n) surfactant based on quantum mechanical methods. The degradation chemistry of TriSil-1n was studied through radical formation and propagation initiated from two prominent pathways (unimolecular and bimolecular reactions) at both 298 K and 1200 K, a relevant temperature in flames and thermal incinerators. Regardless of the pathway taken and temperature, all radical intermediates stemmed from the polyethylene glycol chain and primarily formed stable polydimethylsiloxanes (PDMS) and small organics such as ethylene, formaldehyde, and acetaldehyde, among other products. The major degradation products of TriSil-1n resulting from high-temperature thermal degradation as predicted by this study would be relatively less harmful to the environment compared to PFAS incineration/combustion products from previous research, supporting the replacement of PFAS with TriSil surfactants.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Acetaldehyde , Dimethylpolysiloxanes , Ethylenes , Fluorides , Fluorine , Fluorocarbons/analysis , Formaldehyde , Polyethylene Glycols , Surface-Active Agents/chemistry , Temperature , Water , Water Pollutants, Chemical/analysis
3.
Environ Sci Process Impacts ; 24(11): 2085-2099, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36165287

ABSTRACT

Fluorochemicals are a persistent environmental contaminant that require specialized techniques for degradation and capture. In particular, recent attention on per- and poly-fluoroalkyl substances (PFAS) has led to numerous explorations of different techniques for degrading the super-strong C-F bonds found in these fluorochemicals. In this study, we investigated the hydrodefluorination mechanism using silylium-carborane salts for the degradation of PFAS at the density functional theory (DFT) level. We find that the degradation process involves both a cationic silylium (Et3Si+) and a hydridic silylium (Et3SiH) to facilitate the defluorination and hydride-addition events. Additionally, the role of carborane ([HCB11H5F6]-) is to force unoccupied anti-bonding orbitals to be partially occupied, weakening the C-F bond. We also show that changing the substituents on carborane from fluorine to other halogens weakens the C-F bond even further, with iodic carborane ([HCB11H5I6]-) having the greatest weakening effect. Moreover, our calculations reveal why the C-F bonds are resistant to degradation, and how the silylium-carborane chemistry is able to chemically transform these bonds into C-H bonds. We believe that our results are further applicable to other halocarbons, and can be used to treat either our existing stocks of these chemicals or to treat concentrated solutions following filtration and capture.


Subject(s)
Boranes , Fluorocarbons , Hexachlorobenzene , Catalysis , Fluorine
4.
ACS Omega ; 6(42): 28215-28228, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723019

ABSTRACT

This study explored the fundamental chemical intricacies behind the interactions between metal catalysts and carbon supports with graphitic nitrogen defects. These interactions were probed by examining metal adsorption, specifically, the location of adsorption and the electronic structure of metal catalysts as the basis for the metal-support interactions (MSIs). A computational framework was developed, and a series of 12 transition metals was systematically studied over various graphene models with graphitic nitrogen defect(s). Different modeling approaches served to provide insights into previous MSI computational discrepancies, reviewing both truncated and periodic graphene models. The computational treatment affected the magnitudes of adsorption energies between the metals and support; however, metals generally followed the same trends in their MSI. It was found that the addition of the nitrogen dopant improved the MSI by promoting electronic rearrangement from the metals' d- to s-orbitals for greater orbital overlap with the carbon support, shown with increased favorable adsorption. Furthermore, the study observed periodic trends that were adept descriptors of the MSI fundamental chemistries.

5.
J Org Chem ; 86(21): 14553-14562, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34582209

ABSTRACT

Alloxan is an important toxic glucose analogue used to induce diabetes in lab test animals. Once regarded as a "problem structure," the condensed-phase structure of anhydrous alloxan has largely been settled, but literature inconsistencies remain for the structure of the typically employed reagent alloxan monohydrate. Due to the criticality of structure-function relationships, we have used 1H/13C{1H} NMR, IR spectroscopy, as well as quantum mechanical (QM) calculations to probe the liquid-phase structure and reactivity of alloxan monohydrate. In protic solvents (D2O and acetic acid-d4), hydration at the C5 carbonyl of alloxan monohydrate occurs quantitatively to form the C5 gem-diol (5,5'-dihydroxybarbituric acid). In the aprotic solvent dimethyl sulfoxide (DMSO)-d6, there exists a mixture of the C5 gem-diol and planar tetraketo form of alloxan monohydrate. QM calculations explain the solvent-dependent hydration reactivity, where a solvent-assisted H-atom transfer mechanism lowers the activation energy of water addition at the C5 carbonyl by ∼16 or 27 kcal/mol in water or acetic acid, respectively, compared to the unassisted hydration reaction. Prompt recrystallization of alloxan monohydrate from boiling water does not alter the structure of the reagent. These findings probe the exact structure of alloxan monohydrate to guide future research efforts in biological sciences and in organic synthesis.


Subject(s)
Alloxan , Water , Animals , Dimethyl Sulfoxide , Solvents , Thermodynamics
6.
Sci Data ; 7(1): 244, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694541

ABSTRACT

The stabilities of radicals play a central role in determining the thermodynamics and kinetics of many reactions in organic chemistry. In this data descriptor, we provide consistent and validated quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules containing C, H, N and O atoms. These data consist of optimized 3D geometries, enthalpies, Gibbs free energy, vibrational frequencies, Mulliken charges and spin densities calculated at the M06-2X/def2-TZVP level of theory, which was previously found to have a favorable trade-off between experimental accuracy and computational efficiency. We expect this data to be useful in the further development of machine learning techniques to predict reaction pathways, bond strengths, and other phenomena closely related to organic radical chemistry.

7.
J Hazard Mater ; 400: 123198, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32585513

ABSTRACT

The hazards to health and the environment associated with the transportation sector include smog, particulate matter, and greenhouse gas emissions. Conversion of lignocellulosic biomass into biofuels has the potential to provide significant amounts of infrastructure-compatible liquid transportation fuels that reduce those hazardous materials. However, the development of these technologies is inefficient, due to: (i) the lack of a priori fuel property consideration, (ii) poor shared vocabulary between process chemists and fuel engineers, and (iii) modern and future engines operating outside the range of traditional autoignition metrics such as octane or cetane numbers. In this perspective, we describe an approach where we follow a "fuel-property first" design methodology with a sequence of (i) identifying the desirable fuel properties for modern engines, (ii) defining molecules capable of delivering those properties, and (iii) designing catalysts and processes that can produce those molecules from a candidate feedstock in a specific conversion process. Computational techniques need to be leveraged to minimize expenses and experimental efforts on low-promise options. This concept is illustrated with current research information available for biomass conversion to fuels via catalytic fast pyrolysis and hydrotreating; outstanding challenges and research tools necessary for a successful outcome are presented.


Subject(s)
Biofuels , Pyrolysis , Biomass , Catalysis , Particulate Matter
8.
J Phys Chem A ; 124(21): 4290-4304, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32364731

ABSTRACT

Sooting tendencies of a series of nitrogen-containing hydrocarbons (NHCs) have been recently characterized experimentally using the yield sooting index (YSI) methodology. This work aims to identify soot-relevant reaction pathways for three selected C6H15N amines, namely, dipropylamine (DPA), diisopropylamine (DIPA), and 3,3-dimethylbutylamine (DMBA) using ReaxFF molecular dynamics (MD) simulations and quantum mechanical (QM) calculations and to interpret the experimentally observed trends. ReaxFF MD simulations are performed to determine the important intermediate species and radicals involved in the fuel decomposition and soot formation processes. QM calculations are employed to extensively search for chemical reactions involving these species and radicals based on the ReaxFF MD results and also to quantitatively characterize the potential energy surfaces. Specifically, ReaxFF simulations are carried out in the NVT ensemble at 1400, 1600, and 1800 K, where soot has been identified to form in the YSI experiment. These simulations account for the interactions among test fuel molecules and pre-existing radicals and intermediate species generated from rich methane combustion, using a recently proposed simulation framework. ReaxFF simulations predict that the reactivity of the amines decrease in the order DIPA > DPA > DMBA, independent of temperature. Both QM calculations and ReaxFF simulations predict that C2H4, C3H6, and C4H8 are the main nonaromatic soot precursors formed during the decomposition of DPA, DIPA, and DMBA, respectively, and the associated reaction pathways are identified for each amine. Both theoretical methods predict that sooting tendency increases in the order DPA, DIPA, and DMBA, consistent with the experimentally measured trend in YSI. This work demonstrates that sooting tendencies and soot-relevant reaction pathways of fuels with unknown chemical kinetics can be identified efficiently through combined ReaxFF and QM simulations. Overall, predictions from ReaxFF simulations and QM calculations are consistent, in terms of fuel reactivity, major intermediates, and major nonaromatic soot precursors.

9.
ACS Omega ; 5(14): 8076-8089, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32309717

ABSTRACT

We have determined the identity of the complexes extracted into the ALSEP process solvent from solutions of nitric acid. The ALSEP process is a new solvent extraction separation designed to separate americium and curium from trivalent lanthanides in irradiated nuclear fuel. ALSEP employs a mixture of two extractants, 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N,N,N',N'-tetra(2-ethylhexyl)diglycolamide (TEHDGA) in n-dodecane, which makes it difficult to ascertain the nature of the extracted metal complexes. It is often asserted that the weak acid extractant HEH[EHP] does not participate in the extracted complex under ALSEP extraction conditions (2-4 M HNO3). However, the analysis of the Am extraction equilibria, Nd absorption spectra, and Eu fluorescence emission spectra of metal-loaded organic phases argues for the participation of HEH[EHP] in the extracted complex despite the high acidity of the aqueous phases. The extracted complex was determined to contain fully protonated molecules of HEH[EHP] with an overall stoichiometry of M(TEHDGA)2(HEH[EHP])2·3NO3. Computations also demonstrate that replacing one TEHDGA molecule with one (HEH[EHP])2 dimer is likely energetically favorable compared to Eu(TEHDGA)3·3NO3, whether the HEH[EHP] dimer is monodentate or bidentate.

10.
J Phys Chem A ; 124(21): 4193-4201, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32337990

ABSTRACT

Flavins are a diverse set of compounds with a wide variety of biological and nonbiological applications. Applications of flavins receiving attention recently consist of electro- and photocatalytic oxidation of substrates for organic synthesis, bioengineered nanotechnology, and water splitting catalysts, among others. While there is vast knowledge regarding the structure-property relationships of flavins and their electrochemistry, there is much less work elucidating the structure property relationships as they pertain to flavinium photochemistry. Herein, we report the effect of molecular tailoring on the molecular properties of N(5)-ethyl-flavinium cation (Et-Fl+), a derivative of the biocatalytic coenzyme riboflavin, by incorporating electron withdrawing and donating groups at the C7 and C8 position of the isoalloxazine ring. The presence of electron withdrawing groups at the C8 position caused a red shift in the absorption spectrum, while the electron donating groups caused a blue shift. Functionalization at the C7 position had the opposite effect on the absorption spectrum. The effects of single substitution were relatively negated with simultaneous functionalization at both the C8 and C7 positions. Difference density plots indicate no change in the nature of the S1 excited state, which was confirmed by optimization of the excited state geometries. The results presented in this study indicate that functionalization of the isoalloxazine unit affects the photophysical properties of N(5)-ethyl-flavinium cations.

11.
J Phys Chem B ; 122(22): 5999-6006, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29756779

ABSTRACT

Actinide-lanthanide separation (ALSEP) has been a topic of interest in recent years as it has been shown to selectively extract problematic metals from spent nuclear fuel. However, the process suffers from slow kinetics, prohibiting it from being applied to nuclear facilities. In an effort to improve the process, many fundamental studies have been performed, but the majority have only focused on the thermodynamics of separation. Therefore, to understand the mechanism behind the ALSEP process, molecular dynamics (MD) simulations were utilized to obtain the dynamics and solvation characteristics for an organic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEHEHP). Simulations were conducted with both pure and biphasic solvent systems to evaluate the complex solvent interactions within the ALSEP extraction method. The MD simulations revealed solvation and dynamical behaviors that are consistent with the experimentally observed chemical properties of HEHEHP for the pure solvent systems (e.g., hydrophobic/hydrophilic behaviors of the polar head group and alkyl chains and dimer formation between the ligands within an organic solvent). When present in a biphasic solvent system, interfacial behaviors of the ligand revealed that, at low concentrations, the alkyl side chains of HEHEHP were parallel to the interfacial plane. Upon increasing the concentration to 0.75 M, tendency for the parallel orientation decreased and a more perpendicular-like orientation was observed. Analysis of ligand solvation energies in different solvents through the thermodynamic integration method demonstrated favorability toward n-dodecane and biphasic solvents, which is in agreement with the previous experimental findings.

SELECTION OF CITATIONS
SEARCH DETAIL