Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 15(1): e0227918, 2020.
Article in English | MEDLINE | ID: mdl-31971987

ABSTRACT

Bees play a key role in the functioning of human-modified and natural ecosystems by pollinating agricultural crops and wild plant communities. Global pollinator conservation efforts need large-scale and long-term monitoring to detect changes in species' demographic patterns and shifts in bee community structure. The objective of this project was to test a molecular sequencing pipeline that would utilize a commonly used locus, produce accurate and precise identifications consistent with morphological identifications, and generate data that are both qualitative and quantitative. We applied this amplicon sequencing pipeline to native bee communities sampled across Conservation Reserve Program (CRP) lands and native grasslands in eastern North Dakota. We found the 28S LSU locus to be more capable of discriminating between species than the 18S SSU rRNA locus, and in some cases even resolved instances of cryptic species or morphologically ambiguous species complexes. Overall, we found the amplicon sequencing method to be a qualitatively accurate representation of the sampled bee community richness and species identity, especially when a well-curated database of known 28S LSU sequences is available. Both morphological identification and molecular sequencing revealed similar patterns in native bee community structure across CRP lands and native prairie. Additionally, a genetic algorithm approach to compute taxon-specific correction factors using a small subset of the most concordant samples demonstrated that a high level of quantitative accuracy could be possible if the specimens are fresh and processed soon after collection. Here we provide a first step to a molecular pipeline for identifying insect pollinator communities. This tool should prove useful for future national monitoring efforts as use of molecular tools becomes more affordable and as numbers of 28S LSU sequences for pollinator species increase in publicly-available databases.


Subject(s)
Bees/genetics , Conservation of Natural Resources , Ecosystem , Grassland , Animals , Bees/physiology , Biodiversity , Crops, Agricultural , Humans , Pollination/genetics , Sequence Analysis, DNA
2.
Sci Total Environ ; 565: 682-689, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27219502

ABSTRACT

Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.


Subject(s)
Environmental Pollutants/analysis , Geologic Sediments/chemistry , Pesticides/analysis , Wetlands , Environmental Monitoring , Environmental Pollutants/adverse effects , North Dakota , Pesticides/adverse effects , South Dakota
3.
PLoS One ; 9(6): e99268, 2014.
Article in English | MEDLINE | ID: mdl-24919181

ABSTRACT

Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.


Subject(s)
Bees/physiology , Conservation of Natural Resources , Ecosystem , Pollination , Animals , North Dakota , Satellite Imagery
6.
Sci Total Environ ; 361(1-3): 179-88, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16129474

ABSTRACT

We evaluated the potential of prairie wetlands in North America as carbon sinks. Agricultural conversion has resulted in the average loss of 10.1 Mg ha(-1) of soil organic carbon on over 16 million ha of wetlands in this region. Wetland restoration has potential to sequester 378 Tg of organic carbon over a 10-year period. Wetlands can sequester over twice the organic carbon as no-till cropland on only about 17% of the total land area in the region. We estimate that wetland restoration has potential to offset 2.4% of the annual fossil CO(2) emission reported for North America in 1990.


Subject(s)
Carbon/analysis , Agriculture , Canada , Conservation of Natural Resources , Soil/analysis , United States
SELECTION OF CITATIONS
SEARCH DETAIL