Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612698

ABSTRACT

Helicobacter pylori (H. pylori) infection induces DNA Double-Strand Breaks (DSBs) and consequently activates the DNA Damage Response pathway (DDR) and senescence in gastric epithelium. We studied DDR activation and senescence before and after the eradication of the pathogen. Gastric antral and corpus biopsies of 61 patients with H. pylori infection, prior to and after eradication treatment, were analyzed by means of immunohistochemistry/immunofluorescence for DDR marker (γH2AΧ, phosporylated ataxia telangiectasia-mutated (pATM), p53-binding protein (53BP1) and p53) expression. Samples were also evaluated for Ki67 (proliferation index), cleaved caspase-3 (apoptotic index) and GL13 staining (cellular senescence). Ten H. pylori (-) dyspeptic patients served as controls. All patients were re-endoscoped in 72-1361 days (mean value 434 days), and tissue samples were processed in the same manner. The eradication of the microorganism, in human gastric mucosa, downregulates γH2AΧ expression in both the antrum and corpus (p = 0.00019 and p = 0.00081 respectively). The expression of pATM, p53 and 53BP1 is also reduced after eradication. Proliferation and apoptotic indices were reduced, albeit not significantly, after pathogen clearance. Moreover, cellular senescence is increased in H. pylori-infected mucosa and remains unaffected after eradication. Interestingly, senescence was statistically increased in areas of intestinal metaplasia (IM) compared with adjacent non-metaplastic mucosa (p < 0.001). In conclusion, H. pylori infection triggers DSBs, DDR and senescence in the gastric epithelium. Pathogen eradication reverses the DDR activation but not senescence. Increased senescent cells may favor IM persistence, thus potentially contributing to gastric carcinogenesis.


Subject(s)
Helicobacter pylori , Humans , Tumor Suppressor Protein p53/genetics , Gastric Mucosa , DNA Repair , Epithelium
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473720

ABSTRACT

The currently available anti-cancer therapies, such as gamma-radiation and chemotherapeutic agents, induce cell death and cellular senescence not only in cancer cells but also in the adjacent normal tissue. New anti-tumor approaches focus on limiting the side effects on normal cells. In this frame, the potential anti-tumor properties of Pulsed Electromagnetic Fields (PEMFs) through the irradiation of breast cancer epithelial cells (MCF-7 and MDA-MB-231) and normal fibroblasts (FF95) were investigated. PEMFs had a frequency of 8 Hz, full-square wave type and magnetic flux density of 0.011 T and were applied twice daily for 5 days. The data collected showcase that PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts. Moreover, PEMF irradiation induces cell death and cellular senescence only in breast cancer cells without any effect in the non-cancerous cells. These findings suggest PEMF irradiation as a novel, non-invasive anti-cancer strategy that, when combined with senolytic drugs, may eliminate both cancer and the remaining senescent cells, while simultaneously avoiding the side effects of the current treatments.


Subject(s)
Breast Neoplasms , Electromagnetic Fields , Humans , Female , Cell Death , Cellular Senescence , Fibroblasts
3.
STAR Protoc ; 5(1): 102929, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38460134

ABSTRACT

Identification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking. Our protocols are applicable to cellular systems, tissues, or animal models where senescence is present. For complete details on the use and execution of this protocol, please refer to Magkouta et al.1.


Subject(s)
Cellular Senescence , Fluorescent Dyes , Animals , Cell Separation , Flow Cytometry , Models, Animal
4.
Ann Rheum Dis ; 83(3): 342-350, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38050005

ABSTRACT

OBJECTIVES: Age is the strongest risk factor of giant cell arteritis (GCA), implying a possible pathogenetic role of cellular senescence. To address this question, we applied an established senescence specific multimarker algorithm in temporal artery biopsies (TABs) of GCA patients. METHODS: 75(+) TABs from GCA patients, 22(-) TABs from polymyalgia rheumatica (PMR) patients and 10(-) TABs from non-GCA/non-PMR patients were retrospectively retrieved and analysed. Synovial tissue specimens from patients with inflammatory arthritis and aorta tissue were used as disease control samples. Senescent cells and their histological origin were identified with specific cellular markers; IL-6 and MMP-9 were investigated as components of the senescent associated secretory phenotype by triple costaining. GCA or PMR artery culture supernatants were applied to fibroblasts, HUVECs and monocytes with or without IL-6R blocking agent to explore the induction of IL-6-associated cellular senescence. RESULTS: Senescent cells were present in GCA arteries at higher proportion compared with PMR (9.50% vs 2.66%, respectively, p<0.0001) and were mainly originated from fibroblasts, macrophages and endothelial cells. IL-6 was expressed by senescent fibroblasts, and macrophages while MMP-9 by senescent fibroblasts only. IL-6(+) senescent cells were associated with the extension of vascular inflammation (transmural inflammation vs adventitia limited disease: 10.02% vs 4.37%, respectively, p<0.0001). GCA but not PMR artery culture supernatant could induce IL-6-associated senescence that was partially inhibited by IL-6R blockade. CONCLUSIONS: Senescent cells with inflammatory phenotype are present in GCA arteries and are associated with the tissue inflammatory bulk, suggesting a potential implication in disease pathogenesis.


Subject(s)
Giant Cell Arteritis , Polymyalgia Rheumatica , Humans , Giant Cell Arteritis/complications , Interleukin-6/genetics , Matrix Metalloproteinase 9/genetics , Endothelial Cells/metabolism , Retrospective Studies , Polymyalgia Rheumatica/complications , Phenotype , Cellular Senescence , Inflammation/complications
5.
Mol Cell ; 83(19): 3558-3573.e7, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37802028

ABSTRACT

Cellular senescence is a stress-response mechanism implicated in various physiological processes, diseases, and aging. Current detection approaches have partially addressed the issue of senescent cell identification in clinical specimens. Effective methodologies enabling precise isolation or live tracking of senescent cells are still lacking. In-depth analysis of truly senescent cells is, therefore, an extremely challenging task. We report (1) the synthesis and validation of a fluorophore-conjugated, Sudan Black-B analog (GLF16), suitable for in vivo and in vitro analysis of senescence by fluorescence microscopy and flow cytometry and (2) the development and application of a GLF16-carrying micelle vector facilitating GLF16 uptake by living senescent cells in vivo and in vitro. The compound and the applied methodology render isolation of senescent cells an easy, rapid, and precise process. Straightforward nanocarrier-mediated GLF16 delivery in live senescent cells comprises a unique tool for characterization of senescence at an unprecedented depth.


Subject(s)
Cellular Senescence , Indicators and Reagents , Flow Cytometry
6.
Aging Cell ; 22(9): e13893, 2023 09.
Article in English | MEDLINE | ID: mdl-37547972

ABSTRACT

Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.


Subject(s)
Cellular Senescence , Ribosomes , Cellular Senescence/genetics , Ribosomes/genetics , Ribosomes/metabolism , Protein Biosynthesis
7.
Mech Ageing Dev ; 214: 111856, 2023 09.
Article in English | MEDLINE | ID: mdl-37558168

ABSTRACT

We had shown that administration of the senolytic Dasatinib abolishes arthritis in the human TNF transgenic mouse model of chronic destructive arthritis when given in combination with a sub-therapeutic dose of the anti-TNF mAb Infliximab (1 mg/kg). Herein, we found that while the number of senescent chondrocytes (GL13+/Ki67-), assessed according to guideline algorithmic approaches, was not affected by either Dasatinib or sub-therapeutic Infliximab monotherapies, their combination reduced senescent chondrocytes by 50 %, which was comparable to levels observed with therapeutic Infliximab monotherapy (10 mg/kg). This combination therapy also reduced the expression of multiple factors of senescence-associated secretory phenotype in arthritic joints. Studies to elucidate the interplay of inflammation and senescence may help in optimizing treatment strategies also for age-related pathologies characterized by chronic low-grade joint inflammation.


Subject(s)
Arthritis , Cellular Senescence , Humans , Mice , Animals , Dasatinib/pharmacology , Infliximab/pharmacology , Tumor Necrosis Factor Inhibitors/pharmacology , Inflammation , Mice, Transgenic
8.
J Pathol ; 260(5): 649-665, 2023 08.
Article in English | MEDLINE | ID: mdl-37550877

ABSTRACT

Cellular senescence constitutes a stress response mechanism in reaction to a plethora of stimuli. Senescent cells exhibit cell-cycle arrest and altered function. While cell-cycle withdrawal has been perceived as permanent, recent evidence in cancer research introduced the so-called escape-from-senescence concept. In particular, under certain conditions, senescent cells may resume proliferation, acquiring highly aggressive features. As such, they have been associated with tumour relapse, rendering senescence less effective in inhibiting cancer progression. Thus, conventional cancer treatments, incapable of eliminating senescence, may benefit if revisited to include senolytic agents. To this end, it is anticipated that the assessment of the senescence burden in everyday clinical material by pathologists will play a crucial role in the near future, laying the foundation for more personalised approaches. Here, we provide an overview of the investigations that introduced the escape-from-senescence phenomenon, the identified mechanisms, as well as the major implications for pathology and therapy. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Cellular Senescence , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Cell Cycle Checkpoints , United Kingdom
9.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36671032

ABSTRACT

The contemporary lifestyle of the last decade has undeniably caused a tremendous increase in oxidative-stress-inducing environmental sources. This phenomenon is not only connected with the rise of ROS levels in multiple tissues but is also associated with the induction of senescence in different cell types. Several signaling pathways that are associated with the reduction in ROS levels and the regulation of the cell cycle are being activated, so that the organism can battle deleterious effects. Within this context, autophagy plays a significant role. Through autophagy, cells can maintain their homeostasis, as if it were a self-degradation process, which removes the "wounded" molecules from the cells and uses their materials as a substrate for the creation of new useful cell particles. However, the role of autophagy in senescence has both a "dark" and a "bright" side. This review is an attempt to reveal the mechanistic aspects of this dual role. Nanomedicine can play a significant role, providing materials that are able to act by either preventing ROS generation or controllably inducing it, thus functioning as potential therapeutic agents regulating the activation or inhibition of autophagy.

10.
FEBS J ; 290(5): 1384-1392, 2023 03.
Article in English | MEDLINE | ID: mdl-34653312

ABSTRACT

In-depth analysis of SARS-CoV-2 biology and pathogenesis is rapidly unraveling the mechanisms through which the virus induces all aspects of COVID-19 pathology. Emergence of hundreds of variants and several important variants of concern has focused research on the mechanistic elucidation of virus mutagenesis. RNA viruses evolve quickly either through the error-prone polymerase or the RNA-editing machinery of the cell. In this review, we are discussing the links between cellular senescence, a natural aging process that has been recently linked to SARS-CoV-2 infection, and virus mutagenesis through the RNA-editing enzymes APOBEC. The action of APOBEC, enhanced by cellular senescence, is hypothesized to assist the emergence of novel variants, called quasispecies, within a cell or organism. These variants when introduced to the community may lead to the generation of a variant of concern, depending on fitness and transmissibility of the new genome. Such a mechanism of virus evolution may highlight the importance of inhibitors of cellular senescence during SARS-CoV-2 clinical treatment.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Quasispecies , Viruses/genetics , Cellular Senescence/genetics , RNA
11.
Physiol Rev ; 103(1): 609-647, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36049114

ABSTRACT

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senescence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardiomyopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighboring cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a treatment option in heart disease.


Subject(s)
Cardiovascular Diseases , Humans , Aging/physiology , Quality of Life , Cellular Senescence/physiology
12.
Cureus ; 14(11): e31850, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36579225

ABSTRACT

Introduction First-time acute traumatic patellar dislocation, when managed without a knee magnetic resonance imaging (MRI) scan, may lead to missed diagnoses of important associated knee injuries. The aim of this study was to ascertain the incidence of associated ligamentous and cartilaginous injuries in first-time traumatic patella dislocation. Methods  This was a five-year retrospective study on patients aged 16-45 who had knee MRI scans showing the characteristic bone bruise patterns seen in traumatic lateral patellar dislocation. Anonymized data from the hospital picture archiving and communication system (PACS) was obtained with each scan reviewed by a consultant radiologist, a fellowship-trained orthopaedic knee specialist, and an orthopaedic registrar or resident. Results  A total of 200 knee MRI scans were screened. 61 eligible knee MRI scans were included in the study. The patients' ages ranged from 16 to 42 years old, with a mean of 25 years. 73.8% were male. A medial patellofemoral ligament (MPFL) tear or rupture occurred in 58 of 61 knees (95%) with MPFL attenuation in three (5%) injured knees. Meniscal injuries were identified in 5 of 61 knees (8.2%), medial collateral ligament (MCL) injuries in 11 of 61 knees (18%), osteochondral injuries and loose bodies in 17 of 61 knees (27.9%), and anterior cruciate ligament (ACL) injury in one knee (1.6%). Conclusions  This single-centre MRI-based study has provided information on the incidence of associated chondral and ligamentous injuries in patients with first-time acute traumatic patellar dislocation. This information will be useful for clinicians when counselling patients and will add to the available literature on this injury. An MRI scan should be obtained in cases of suspected first-time traumatic patellar dislocations, especially in active young patients, due to the incidence of other associated traumatic knee lesions that might need surgical treatment and lead to persisting knee symptoms if neglected.

14.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35086840

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory system can progress to a multisystemic disease with aberrant inflammatory response. Cellular senescence promotes chronic inflammation, named senescence-associated secretory phenotype (SASP). We investigated whether coronavirus disease 2019 (COVID-19) is associated with cellular senescence and SASP. METHODS: Autopsy lung tissue samples from 11 COVID-19 patients and 43 age-matched non-COVID-19 controls with similar comorbidities were analysed by immunohistochemistry for SARS-CoV-2, markers of senescence and key SASP cytokines. Virally induced senescence was functionally recapitulated in vitro, by infecting epithelial Vero-E6 cells and a three-dimensional alveosphere system of alveolar type 2 (AT2) cells with SARS-CoV-2 strains isolated from COVID-19 patients. RESULTS: SARS-CoV-2 was detected by immunocytochemistry and electron microscopy predominantly in AT2 cells. Infected AT2 cells expressed angiotensin-converting enzyme 2 and exhibited increased senescence (p16INK4A and SenTraGor positivity) and interleukin (IL)-1ß and IL-6 expression. In vitro, infection of Vero-E6 cells with SARS-CoV-2 induced senescence (SenTraGor), DNA damage (γ-H2AX) and increased cytokine (IL-1ß, IL-6, CXCL8) and apolipoprotein B mRNA-editing (APOBEC) enzyme expression. Next-generation sequencing analysis of progenies obtained from infected/senescent Vero-E6 cells demonstrated APOBEC-mediated SARS-CoV-2 mutations. Dissemination of the SARS-CoV-2-infection and senescence was confirmed in extrapulmonary sites (kidney and liver) of a COVID-19 patient. CONCLUSIONS: We demonstrate that in severe COVID-19, AT2 cells infected by SARS-CoV-2 exhibit senescence and a proinflammatory phenotype. In vitro, SARS-CoV-2 infection induces senescence and inflammation. Importantly, infected senescent cells may act as a source of SARS-CoV-2 mutagenesis mediated by APOBEC enzymes. Therefore, SARS-CoV-2-induced senescence may be an important molecular mechanism of severe COVID-19, disease persistence and mutagenesis.


Subject(s)
COVID-19 , SARS-CoV-2 , Cellular Senescence , Cytokines/metabolism , Humans , Inflammation , Interleukin-6 , Lung/metabolism , Mutagenesis , Phenotype
15.
EMBO Rep ; 23(2): e51287, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34897944

ABSTRACT

RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.


Subject(s)
Receptors, Notch , Signal Transduction , Transcription Factor HES-1 , Tumor Suppressor Proteins , Humans , Nuclear Proteins/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
17.
Mol Cell ; 81(23): 4907-4923.e8, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34793711

ABSTRACT

Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.


Subject(s)
Cellular Senescence , Chromosome Inversion , Chromosomes/ultrastructure , Epithelial-Mesenchymal Transition , Neoplasms/genetics , Oncogenes , Recombination, Genetic , Animals , Bronchi/metabolism , CRISPR-Cas Systems , Cell Cycle , Cell Transformation, Neoplastic , Circadian Rhythm , Computational Biology , Epithelial Cells/metabolism , Flow Cytometry , Genomics , Humans , Karyotyping , Mice , Mice, SCID , Neoplasms/metabolism , Phenotype , Protein Binding , Protein Domains , Senescence-Associated Secretory Phenotype
18.
Mech Ageing Dev ; 199: 111564, 2021 10.
Article in English | MEDLINE | ID: mdl-34474077

ABSTRACT

Intervertebral disc (IVD) degeneration is considered an important contributor of low back pain, a major age-related disease. Interestingly, an unprecedented high number of senescent cells has been reported in aged and degenerated IVDs, most probably affecting tissue homeostasis. In previous studies classical markers of cellular senescence have been used, such as SA-ß-gal staining or p16Ink4a expression. Aim of the presented study was a re-evaluation of the number of senescent IVD cells by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13), which can be used in fresh, as well as in fixed and embedded tissues. In cultures of senescent rat and human IVD cells both SA-ß-gal and GL13 gave similar percentages of senescent cells. Similarly, in fresh tissues from old rats the ratios of senescent cells were high with both detection procedures. Finally, in formalin-fixed and paraffin-embedded tissues from humans, a significant increased number of GL13-positive cells was found in herniated tissues, as compared to apparently normal ones, while similar numbers of p16Ink4a-positive cells were observed. These data confirm the significantly enhanced number of senescent cells in aged and degenerated IVDs, most probably contributing to the degeneration of this tissue.


Subject(s)
Aging , Cell Count/methods , Cellular Senescence , Intervertebral Disc Degeneration , Intervertebral Disc , Lipofuscin/pharmacology , Staining and Labeling/methods , Aging/metabolism , Aging/pathology , Animals , Azo Compounds/pharmacology , Cell Culture Techniques , Coloring Agents/pharmacology , Humans , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/pathology , Naphthalenes/pharmacology , Rats
19.
Pathogens ; 10(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203975

ABSTRACT

Domestic rabbits are commercially farmed for their meat whilst gastrointestinal diseases can hinder their production. Passalurusambiguus and Eimeria spp. are two common rabbit intestinal parasites that can cause diarrhoea, among other symptoms, and in severe cases, death. C. guttulatus is a commensal yeast of the rabbits' stomach that is considered apathogenic but can worsen symptoms in rabbits suffering from coccidiosis. In the present case report, we describe an outbreak of deaths in three different age groups (A: lactating does, B: 58 days old and C: 80 days old) in an industrial rabbit farm in Greece. Symptoms included depression, diarrhoea, inappetence, weight loss, dehydration and ruffled furs. Using a faecal flotation technique, sick rabbits were found to be moderately to heavily infected with P. ambiguus, Eimeria spp. and C. guttulatus. Treatment with fenbendazole and oregano oil combined with hygiene control measures successfully controlled the infections and resolved clinical symptoms. A faecal flotation method or other reliable diagnostic technique should be used regularly in industrial rabbit farms to screen for gastrointestinal parasitic infections. Early diagnosis and control will help to maintain production levels and, therefore, limit financial losses for the farmer while ensuring animal welfare.

20.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Article in English | MEDLINE | ID: mdl-33947663

ABSTRACT

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
APOBEC Deaminases/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Instability , DNA Replication , Female , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...