Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Blood ; 139(14): 2227-2239, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35051265

ABSTRACT

The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia.


Subject(s)
Blood Platelets , Thrombocythemia, Essential , Blood Platelets/metabolism , Humans , Megakaryocytes/metabolism , Microtubules , Platelet Count , Receptors, Cytokine , Thrombocythemia, Essential/drug therapy , Thrombopoiesis/genetics
2.
Blood Adv ; 5(7): 1977-1990, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33843988

ABSTRACT

The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently. We design a bespoke media to maximize both production and maturity of MKs and improve platelet output. Crucially, we transition the lentiviral-based FoP of hPSCs to a nonviral inducible system. We also show how small molecules promote a definitive hematopoiesis phenotype during the differentiation process, thereby increasing the quality of the final product. Finally, we generate platelets using a bioreactor designed to reproduce the physical cues that promote platelet production in the bone marrow. We show that these platelets are able to contribute to both thrombus formation in vitro and have a hemostatic effect in thrombocytopenic mice in vivo.


Subject(s)
Megakaryocytes , Pluripotent Stem Cells , Animals , Bioreactors , Blood Platelets , Mice , Thrombopoiesis
3.
Reprod Fertil ; 2(1): L1-L3, 2021 01.
Article in English | MEDLINE | ID: mdl-35128437

ABSTRACT

In IVF, eggs and sperm are added together for fertilisation to occur whereas ICSI involves injecting a single sperm into each egg. ICSI is very effective where sperm count or swimming is poor (male infertility) but is slightly riskier than IVF in terms of health problems in children, although these risks are small. However, the risk of no eggs fertilising is higher for IVF compared to ICSI and couples undertaking fertility preservation, for example, before cancer treatment, usually only have time for one attempt. Using fertility preservation treatment cycle data reported to Human Fertilisation and Embryology Authority (HFEA), this study shows that ICSI results in higher number of fertilised eggs and embryos for storage or treatment compared to IVF. However, 19% of eggs are not used in ICSI treatment, so IVF appears to be better overall. Clinics should choose IVF or ICSI for fertility preservation depending on sperm characteristics rather than using ICSI for all.


Subject(s)
Fertility Preservation , Infertility, Male , Child , Fertilization in Vitro , Humans , Male , Semen , Sperm Injections, Intracytoplasmic
4.
Sci Adv ; 6(34): eaay9506, 2020 08.
Article in English | MEDLINE | ID: mdl-32875100

ABSTRACT

Maternal immune activation increases the risk of neurodevelopmental disorders. Elevated cytokines, such as interferon-γ (IFN-γ), in offspring's brains play a central role. IFN-γ activates an antiviral cellular state, limiting viral entry and replication. Moreover, IFN-γ is implicated in brain development. We tested the hypothesis that IFN-γ signaling contributes to molecular and cellular phenotypes associated with neurodevelopmental disorders. Transient IFN-γ treatment of neural progenitors derived from human induced pluripotent stem cells increased neurite outgrowth. RNA sequencing analysis revealed that major histocompatibility complex class I (MHCI) genes were persistently up-regulated through neuronal differentiation-an effect that was mediated by IFN-γ-induced promyelocytic leukemia protein (PML) nuclear bodies. Critically, IFN-γ-induced neurite outgrowth required both PML and MHCI. We also found evidence that IFN-γ disproportionately altered the expression of genes associated with schizophrenia and autism, suggesting convergence between genetic and environmental risk factors. Together, these data implicate IFN-γ signaling in neurodevelopmental disorder etiology.


Subject(s)
Induced Pluripotent Stem Cells , Neurodevelopmental Disorders , Humans , Induced Pluripotent Stem Cells/metabolism , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Phenotype
5.
Methods Mol Biol ; 1812: 155-176, 2018.
Article in English | MEDLINE | ID: mdl-30171578

ABSTRACT

The differentiation of megakaryocytes from human pluripotent stem cells in vitro offers intriguing new perspectives for research and transfusion medicine. However, applications have been hampered by the low efficiency of cytokine driven differentiation protocols leading to poor megakaryocyte purity and yield. Here we describe a novel forward programming approach relying on the combined ectopic expression of the three transcription factors GATA1, FLI1, and TAL1 in human pluripotent stem cells for large scale production of mature megakaryocytes using chemically defined culture and minimum cytokines.


Subject(s)
Megakaryocytes/cytology , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation , Embryoid Bodies/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Megakaryocytes/metabolism , Pluripotent Stem Cells/metabolism , Skin/cytology
6.
Biomaterials ; 182: 135-144, 2018 11.
Article in English | MEDLINE | ID: mdl-30118981

ABSTRACT

Platelet transfusions are a key treatment option for a range of life threatening conditions including cancer, chemotherapy and surgery. Efficient ex vivo systems to generate donor independent platelets in clinically relevant numbers could provide a useful substitute. Large quantities of megakaryocytes (MKs) can be produced from human pluripotent stem cells, but in 2D culture the ratio of platelets harvested from MK cells has been limited and restricts production rate. The development of biomaterial cell supports that replicate vital hematopoietic micro-environment cues are one strategy that may increase in vitro platelet production rates from iPS derived Megakaryocyte cells. In this paper, we present the results obtained generating, simulating and using a novel structurally-graded collagen scaffold within a flow bioreactor system seeded with programmed stem cells. Theoretical analysis of porosity using micro-computed tomography analysis and synthetic micro-particle filtration provided a predictive tool to tailor cell distribution throughout the material. When used with MK programmed stem cells the graded scaffolds influenced cell location while maintaining the ability to continuously release metabolically active CD41 + CD42 + functional platelets. This scaffold design and novel fabrication technique offers a significant advance in understanding the influence of scaffold architectures on cell seeding, retention and platelet production.


Subject(s)
Blood Platelets/cytology , Collagen/chemistry , Megakaryocytes/cytology , Pluripotent Stem Cells/cytology , Thrombopoiesis , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Bioreactors , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cells, Cultured , Equipment Design , Humans
8.
Mol Biol Evol ; 34(7): 1613-1628, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28369510

ABSTRACT

TYRO3, AXL, and MERTK (TAM) receptors are a family of receptor tyrosine kinases that maintain homeostasis through the clearance of apoptotic cells, and when defective, contribute to chronic inflammatory and autoimmune diseases such as atherosclerosis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Crohn's disease. In addition, certain enveloped viruses utilize TAM receptors for immune evasion and entry into host cells, with several viruses preferentially hijacking MERTK for these purposes. Despite the biological importance of TAM receptors, little is understood of their recent evolution and its impact on their function. Using evolutionary analysis of primate TAM receptor sequences, we identified strong, recent positive selection in MERTK's signal peptide and transmembrane domain that was absent from TYRO3 and AXL. Reconstruction of hominid and primate ancestral MERTK sequences revealed three nonsynonymous single nucleotide polymorphisms in the human MERTK signal peptide, with a G14C mutation resulting in a predicted non-B DNA cruciform motif, producing a significant decrease in MERTK expression with no significant effect on MERTK trafficking or half-life. Reconstruction of MERTK's transmembrane domain identified three amino acid substitutions and four amino acid insertions in humans, which led to significantly higher levels of self-clustering through the creation of a new interaction motif. This clustering counteracted the effect of the signal peptide mutations through enhancing MERTK avidity, whereas the lower MERTK expression led to reduced binding of Ebola virus-like particles. The decreased MERTK expression counterbalanced by increased avidity is consistent with antagonistic coevolution to evade viral hijacking of MERTK.


Subject(s)
Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Animals , Apoptosis/genetics , Base Sequence/genetics , Cell Movement , Evolution, Molecular , Homeostasis , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Primates/genetics , Protein-Tyrosine Kinases , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Silent Mutation/genetics , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
9.
Methods Mol Biol ; 1519: 25-41, 2017.
Article in English | MEDLINE | ID: mdl-27815871

ABSTRACT

Efferocytosis, the phagocytic removal of apoptotic cells, is a dynamic process requiring recruitment of numerous regulatory proteins to forming efferosomes in a tightly regulated manner. Herein we describe microscopy-based methods for the enumeration of efferocytic events and characterization of the spatiotemporal dynamics of signaling molecule recruitment to efferosomes, using genetically encoded probes and immunofluorescent labeling. While these methods are illustrated using macrophages, they are applicable to any efferocytic cell type.


Subject(s)
Apoptosis , Biological Assay/methods , Phagocytosis , Fluorescent Antibody Technique , Humans , Jurkat Cells , Macrophages/cytology , Transfection
10.
Nat Commun ; 7: 11208, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052461

ABSTRACT

The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cellular Reprogramming , GATA1 Transcription Factor/genetics , Megakaryocytes/cytology , Pluripotent Stem Cells/cytology , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cryopreservation/methods , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Lentivirus/genetics , Megakaryocytes/metabolism , Microarray Analysis , Pluripotent Stem Cells/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins/metabolism , Signal Transduction , T-Cell Acute Lymphocytic Leukemia Protein 1 , Transduction, Genetic , Transgenes
11.
PLoS One ; 7(3): e33346, 2012.
Article in English | MEDLINE | ID: mdl-22479388

ABSTRACT

BACKGROUND: The T-box transcription factor Brachyury (T) is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse. METHODOLOGY/PRINCIPAL FINDINGS: Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC)(n) repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents. CONCLUSIONS/SIGNIFICANCE: Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/metabolism , Fetal Proteins/metabolism , Proteins/metabolism , T-Box Domain Proteins/metabolism , Animals , Axin Protein/genetics , Axin Protein/metabolism , Base Sequence , Binding Sites/genetics , Blotting, Western , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Fetal Proteins/genetics , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Mice , Mice, 129 Strain , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Binding , Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Box Domain Proteins/genetics , Time Factors , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
13.
Hum Mol Genet ; 14(22): 3347-59, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16203745

ABSTRACT

Heterozygous mutations in the homeobox gene, PITX2, result in ocular anterior segment defects and a high incidence of early-onset glaucoma. Pitx2 is expressed in both the neural crest and the mesoderm-derived precursors of the periocular mesenchyme. Complete loss of function in mice results in agenesis or severe disruption of periocular mesenchyme structures and extrinsic defects in early optic nerve development. However, the specific requirements for Pitx2 in neural crest versus mesoderm could not be determined using these mice, and only roles in the initial stages of eye development could be assessed due to early embryonic lethality. To determine the specific roles of Pitx2 in the neural crest precursor pool, we generated neural crest-specific Pitx2 knockout mice (Pitx2-ncko). Because Pitx2-nkco mice are viable, we also analyzed gene function in later eye development. Pitx2 is intrinsically required in neural crest for specification of corneal endothelium, corneal stroma and the sclera. Pitx2 function in neural crest is also required for normal development of ocular blood vessels. Pitx2-ncko mice exhibit a unique optic nerve phenotype in which the eyes are progressively displaced towards the midline until they are directly attached to the ventral hypothalamus. As Pitx2 is not expressed in the optic stalk, an essential function of PITX2 protein in neural crest is to regulate an extrinsic factor(s) required for development of the optic nerve. We propose a revised model of optic nerve development and new mechanisms that may underlie the etiology of glaucoma in Axenfeld-Rieger patients.


Subject(s)
Eye/embryology , Homeodomain Proteins/physiology , Neural Crest/embryology , Nuclear Proteins/physiology , Animals , Anophthalmos/embryology , Anophthalmos/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Mesoderm/physiology , Mice , Mice, Knockout , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Optic Nerve/abnormalities , Optic Nerve/embryology , Pigment Epithelium of Eye/embryology , Pigment Epithelium of Eye/pathology , Transcription Factors , Homeobox Protein PITX2
14.
Mol Cancer Ther ; 3(8): 993-1001, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15299082

ABSTRACT

Endometrial cancer is the most common gynecologic malignancy, frequently arising in association with obesity and diabetes mellitus. To identify gene pathways contributing to endometrial cancer development, we studied the transcriptome of 20 endometrial cancers and 11 benign endometrial tissues using cDNA microarrays. Among the transcript changes identified in endometrial cancer were up-regulation of the nuclear hormone receptors peroxisome proliferator-activated receptors (PPAR) alpha and gamma, whereas retinoid X receptor beta was down-regulated. To clarify the contribution of PPARalpha to endometrial carcinogenesis, we did experiments on cultured endometrial carcinoma cells expressing this transcript. Treatment with fenofibrate, an activating ligand for PPARalpha, significantly reduced proliferation and increased cell death, suggesting that altered expression of nuclear hormone receptors involved with fatty acid metabolism leads to deregulated cellular proliferation and apoptosis. These results support further investigation of members of the PPAR/retinoid X receptor pathway as novel therapeutic targets in endometrial cancer.


Subject(s)
Endometrial Neoplasms/pathology , Peroxisome Proliferator-Activated Receptors/metabolism , Cell Death , Cell Line , Cell Line, Tumor , Cytoplasm/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/therapy , Female , Genes, Reporter , Humans , Immunohistochemistry , Ligands , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/pathology , PPAR alpha/metabolism , PPAR gamma/metabolism , RNA/chemistry , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
15.
Angiogenesis ; 6(2): 93-104, 2003.
Article in English | MEDLINE | ID: mdl-14739616

ABSTRACT

Vasculogenesis, angiogenesis and vascular remodelling are complex processes where the fate of several cell types is determined by different signalling networks. Many of these networks ultimately function by changing the abundance of RNA transcripts within the cells which constitute blood vessel walls. Researchers can now map these transcript abundance changes using gene array technology. In this review, we describe the design, production and use of a gene array specifically tailored to investigate vascular biology. We describe the advantages of tailored gene arrays, and give detailed protocols based on our experience to allow the reader to use such gene arrays to generate meaningful data. We list the issues to consider when choosing and verifying the genes and splice variants included in an array, and describe our use of Arabidopsis sp. RNA spikes for quality control. We present data that illustrates the absolute necessity for both technical and biological replicates to be incorporated in the design of gene array experiments using primary cells such as HUVECS. Finally, we describe methods for the normalisation and interpretation of the data that gene arrays produce. The approach to gene array technology described here is easily within reach of the budget and expertise of most academic research groups.


Subject(s)
Cardiovascular Physiological Phenomena , Gene Expression Regulation/physiology , Neovascularization, Physiologic/physiology , Oligonucleotide Array Sequence Analysis , Neovascularization, Physiologic/genetics , Polymerase Chain Reaction , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...