Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
2.
Sci Total Environ ; 920: 171053, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38378060

ABSTRACT

Although it is evident that PM2.5 has serious adverse health effects, there is no consensus on what the biologically effective dose is. In this study, the intrinsic oxidative potential (OPm) and the extrinsic oxidative potential (OPv) of PM2.5 were measured using three chemical assays including dithiothreitol (DTT), ascorbic acid (AA), and reduced glutathione (GSH), along with chemical compositions of PM2.5 in South Korea. Among the three chemical assays, only OPmAA showed a statistically significant correlation with PM2.5 while OPmGSH and OPmDTT were not correlated with PM2.5 mass concentration. When the samples were categorized by PM2.5 mass concentrations, the variations in the proportion of Ni, As, Mn, Cd, Pb, and Se to PM2.5 mass closely coincided with changes in OPm across all three assays, suggesting a potential association between these elements and PM2.5 OP. Multiple linear regression analysis identified the significant PM components affecting the variability in extrinsic OPv. OPvAA was determined to be significantly influenced by EC, K+, and Ba while OC and Al were common significant factors for OPvGSH and OPvDTT. It was also found that primary OC was an important variable for OPvDTT while secondary OC significantly affected the variability of OPvGSH.

3.
Epidemiology ; 34(6): 897-905, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37732880

ABSTRACT

BACKGROUND: Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature. METHODS: We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders. RESULTS: Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years). CONCLUSIONS: The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.


Subject(s)
Hospitalization , Myocardial Ischemia , Humans , Aged , Cross-Over Studies , Temperature , Canada/epidemiology , Myocardial Ischemia/epidemiology , Dust , Oxidative Stress
4.
Thorax ; 78(5): 459-466, 2023 05.
Article in English | MEDLINE | ID: mdl-35361687

ABSTRACT

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Cross-Over Studies , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Ontario/epidemiology , Emergency Service, Hospital , Environmental Exposure/adverse effects , Environmental Exposure/analysis
5.
Epidemiology ; 33(6): 767-776, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36165987

ABSTRACT

BACKGROUND: Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS: We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS: Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION: Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.


Subject(s)
Air Pollutants , Air Pollution , Adult , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Gases , Glutathione , Humans , Oxidants , Oxidation-Reduction , Oxidative Stress , Particulate Matter/analysis , Sulfur
6.
Sci Total Environ ; 849: 157818, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35940272

ABSTRACT

Traffic-related air pollutants (TRAP) including nitric oxide (NO), nitrogen oxide (NOx), carbon monoxide (CO), ultrafine particles (UFP), black carbon (BC), and fine particulate matter (PM2.5) were simultaneously measured at near-road sites located at 10 m (NR10) and 150 m (NR150) from the same side of a busy highway to provide insights into the influence of winter time meteorology on exposure to TRAP near major roads. The spatial variabilities of TRAP were examined for ambient temperatures ranging from -11 °C to +19 °C under downwind, upwind, and stagnant air conditions. The downwind TRAP concentrations at NR10 were higher than the upwind concentrations by a factor of 1.4 for CO to 13 for NO. Despite steep downwind reductions of 38 % to 75 % within 150 m, the downwind concentrations at NR150 were still well above upwind concentrations. Near-road concentrations of NOx and UFP increased as ambient temperatures decreased due to elevated emissions of NOx and UFP from vehicles under colder temperatures. Traffic-related PM2.5 sources were identified using hourly PM2.5 chemical components including organic/inorganic aerosol and trace metals at both sites. The downwind concentrations of primary PM2.5 species related to tailpipe and non-tailpipe emissions at NR10 were substantially higher than the upwind concentrations by a factor of 4 and 32, respectively. Traffic-related PM2.5 sources accounted for almost half of total PM2.5 mass under downwind conditions, leading to a rapid change of PM2.5 chemical composition. Under stagnant air conditions, the concentrations of most TRAP and related PM2.5 including tailpipe emissions, secondary nitrate, and organic aerosol were comparable to, or even greater than, the downwind concentrations under windy conditions, especially at NR150. This study demonstrates that stagnant air conditions further widen the traffic-influenced area and people living near major roadways may experience increased risks from elevated exposure to traffic emissions during cold and stagnant winter conditions.


Subject(s)
Air Pollutants , Air Pollution , Aerosols , Air Pollutants/analysis , Air Pollution/analysis , Carbon Monoxide , Environmental Monitoring , Humans , Nitrates , Nitric Oxide , Nitrogen Oxides/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
7.
Am J Respir Crit Care Med ; 206(11): 1370-1378, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35802828

ABSTRACT

Rationale: Outdoor particulate and gaseous air pollutants impair respiratory health in children, and these associations may be influenced by particle composition. Objectives: To examine whether associations between short-term variations in fine particulate air pollution, oxidant gases, and respiratory hospitalizations in children are modified by particle constituents (metals and sulfur) or oxidative potential. Methods: We conducted a case-crossover study of 10,500 children (0-17 years of age) across Canada. Daily fine particle mass concentrations and oxidant gases (nitrogen dioxide and ozone) were collected from ground monitors. Monthly estimates of fine particle constituents (metals and sulfur) and oxidative potential were also measured. Conditional logistic regression models were used to estimate associations between air pollutants and respiratory hospitalizations, above and below median values for particle constituents and oxidative potential. Measurements and Main Results: Lag-1 fine particulate matter mass concentrations were not associated with respiratory hospitalizations (odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter: 1.004 [0.955-1.056]) in analyses ignoring particle constituents and oxidative potential. However, when models were examined above or below median metals, sulfur, and oxidative potential, positive associations were observed above the median. For example, the odds ratio and 95% confidence interval per 10 µg/m3 increase in fine particulate matter were 1.084 (1.007-1.167) when copper was above the median and 0.970 (0.929-1.014) when copper was below the median. Similar trends were observed for oxidant gases. Conclusions: Stronger associations were observed between outdoor fine particles, oxidant gases, and respiratory hospitalizations in children when metals, sulfur, and particle oxidative potential were elevated.


Subject(s)
Air Pollutants , Air Pollution , Child , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Copper/adverse effects , Copper/analysis , Cross-Over Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Hospitalization , Nitrogen Dioxide/adverse effects , Oxidants/adverse effects , Oxidative Stress , Particulate Matter/adverse effects , Particulate Matter/analysis , Sulfur/adverse effects , Sulfur/analysis , Infant, Newborn , Infant , Child, Preschool , Adolescent
8.
Ann Work Expo Health ; 66(3): 379-391, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34595509

ABSTRACT

Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.


Subject(s)
Air Pollutants , Occupational Exposure , Air Pollutants/analysis , Environmental Monitoring/methods , Humans , Oxidation-Reduction , Oxidative Stress , Particle Size , Particulate Matter/analysis
9.
Environ Pollut ; 292(Pt B): 118417, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34743966

ABSTRACT

The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM2.5 and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM2.5 only decreased by 4% relative to the baselines. Major chemical components of PM2.5, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM2.5 sources were assessed using hourly chemical composition measurements of PM2.5. Major regional and secondary PM2.5 sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
10.
Environ Health Perspect ; 129(10): 107005, 2021 10.
Article in English | MEDLINE | ID: mdl-34644144

ABSTRACT

BACKGROUND: We do not currently understand how spatiotemporal variations in the composition of fine particulate air pollution [fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5)] affects population health risks. However, recent evidence suggests that joint concentrations of transition metals and sulfate may influence the oxidative potential (OP) of PM2.5 and associated health impacts. OBJECTIVES: The purpose of the study was to evaluate how combinations of transition metals/OP and sulfur content in outdoor PM2.5 influence associations with acute cardiovascular events. METHODS: We conducted a national case-crossover study of outdoor PM2.5 and acute cardiovascular events in Canada between 2016 and 2017 (93,344 adult cases). Monthly mean transition metal and sulfur (S) concentrations in PM2.5 were determined prospectively along with estimates of OP using acellular assays for glutathione (OPGSH), ascorbate (OPAA), and dithiothreitol depletion (OPDTT). Conditional logistic regression models were used to estimate odds ratios (OR) [95% confidence intervals (CI)] for PM2.5 across strata of transition metals/OP and sulfur. RESULTS: Among men, the magnitudes of observed associations were strongest when both transition metal and sulfur content were elevated. For example, an OR of 1.078 (95% CI: 1.049, 1.108) (per 10µg/m3) was observed for cardiovascular events in men when both copper and S were above the median, whereas a weaker association was observed when both elements were below median values (OR=1.019, 95% CI: 1.007, 1.031). A similar pattern was observed for OP metrics. PM2.5 was not associated with acute cardiovascular events in women. DISCUSSION: The combined transition metal and sulfur content of outdoor PM2.5 influences the strength of association with acute cardiovascular events in men. Regions with elevated concentrations of both sulfur and transition metals in PM2.5 should be examined as priority areas for regulatory interventions. https://doi.org/10.1289/EHP9449.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Adult , Air Pollutants/analysis , Air Pollution/analysis , Canada/epidemiology , Cardiovascular Diseases/epidemiology , Cross-Over Studies , Environmental Exposure/analysis , Environmental Monitoring , Female , Humans , Male , Oxidative Stress , Particulate Matter/analysis , Sulfur
11.
Environ Int ; 156: 106732, 2021 11.
Article in English | MEDLINE | ID: mdl-34197974

ABSTRACT

Severe episodic air pollution blankets entire cities and regions and have a profound impact on humans and their activities. We compiled daily fine particle (PM2.5) data from 100 cities in five continents, investigated the trends of number, frequency, and duration of pollution episodes, and compared these with the baseline trend in air pollution. We showed that the factors contributing to these events are complex; however, long-term measures to abate emissions from all anthropogenic sources at all times is also the most efficient way to reduce the occurrence of severe air pollution events. In the short term, accurate forecasting systems of such events based on the meteorological conditions favouring their occurrence, together with effective emergency mitigation of anthropogenic sources, may lessen their magnitude and/or duration. However, there is no clear way of preventing events caused by natural sources affected by climate change, such as wildfires and desert dust outbreaks.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring , Humans , Meteorology , Particulate Matter/analysis
12.
Environ Sci Technol ; 55(14): 9750-9760, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34241996

ABSTRACT

Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per µg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Environmental Monitoring , Humans , Oxidative Stress , Particulate Matter/analysis
13.
Environ Sci Technol ; 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34328323

ABSTRACT

Subway PM2.5 can be substantially sourced from the operation of the system itself. Improvements in subway air quality may be possible by examining the potential to reduce these emissions. To this end, PM2.5 was measured on the trains and station platforms of the Toronto subway system. A comparison with previously published data for this system reveals significant changes in below ground platform PM2.5. A reduction of nearly one-third (ratio (95% CI): 0.69 (0.63, 0.75)) in PM2.5 from 2011 to 2018 appears to have resulted from a complete modernization of the rolling stock on one subway line. In contrast, below ground platform PM2.5 for another line increased by a factor of 1.48 (95% CI; 1.42, 1.56). This increase may be related to an increase in emergency brake applications, the resolution of which coincided with a large decrease in PM2.5 concentrations on that line. Finally, platform PM2.5 in two newly opened stations attained, within one year of operation, typical concentrations of the neighboring platforms installed in 1963. Combined, these findings suggest that the production of platform PM2.5 is localized and hence largely freshly emitted. Further, PM2.5 changed across this subway system due to changes in its operation and rolling stock. Thus, similar interventions applied intentionally may prove to be equally effective in reducing PM2.5. Moreover, establishing a network of platform PM2.5 monitors is recommended to monitor ongoing improvements and identify impacts of future system changes on subway air quality. This would result in a better understanding of the relationship between the operations and air quality of subways.

14.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33798018

ABSTRACT

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Subject(s)
Air Pollution/analysis , COVID-19/metabolism , Models, Statistical , Reactive Oxygen Species/analysis , COVID-19/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Ontario/epidemiology , SARS-CoV-2
15.
Environ Res ; 196: 111010, 2021 05.
Article in English | MEDLINE | ID: mdl-33716024

ABSTRACT

A spatiotemporal land use regression (LUR) model optimized to predict nitrogen dioxide (NO2) concentrations obtained from on-road, mobile measurements collected in 2015-16 was independently evaluated using concentrations observed at multiple sites across Toronto, Canada, obtained more than ten years earlier. This spatiotemporal LUR modelling approach improves upon estimates of historical NO2 concentrations derived from the previously used method of back-extrapolation. The optimal spatiotemporal LUR model (R2 = 0.71 for prediction of NO2 data in 2002 and 2004) uses daily average NO2 concentrations observed at multiple long-term monitoring sites and hourly average wind speed recorded at a single site, along with spatial predictors based on geographical information system data, to estimate NO2 levels for time periods outside of those used for model development. While the model tended to underestimate samplers located close to the roadway, it showed great accuracy when estimating samplers located beyond 100 m which are probably more relevant for exposure at residences. This study shows that spatiotemporal LUR models developed from strategic, multi-day (30 days in 3 different months) mobile measurements can enhance LUR model's ability to estimate long-term, intra-urban NO2 patterns. Furthermore, the mobile sampling strategy enabled this new LUR model to cover a larger domain of Toronto and outlying suburban communities, thereby increasing the potential population for future epidemiological studies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Environmental Monitoring , Models, Theoretical , Nitrogen Dioxide/analysis , Particulate Matter/analysis
16.
Sci Total Environ ; 774: 145028, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33610998

ABSTRACT

Significant attention, especially in the last decade, has been focussed on elevated concentrations of ultrafine particulate matter (UFP) in urban areas and the adverse health effects associated with exposure to UFP. Despite this, there is a relative scarcity of long-term ambient UFP measurements. This study examined trends in UFP measurements made continuously near a busy roadway in downtown Toronto, Canada, between the years 2006 and 2019 using a fast mobility particle sizer (FMPS). These long-term trends were associated with other air pollutant concentrations-namely: nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and fine particulate matter mass concentrations (PM2.5)-and persistent declining trends were observed for each during the study period. From 2006 to 2019, reductions of 45%, 68%, 39%, 83%, and 41%, for UFP, NO, NO2, SO2, and PM2.5, respectively, were observed. These reductions are in part associated with a total phase-out of coal-fired electricity generation in Ontario, Canada, between 2004 and 2015, and continuous improvements in vehicle emissions control technologies. Additionally, deconvolution of the time-series yielded seasonal fluctuations which were analysed as a function of particle diameter and ambient temperature, the results from which may aid in the comparison of UFP measurements made in climates with different ambient temperature ranges in a meaningful way. Finally, the UFP data were background-subtracted and it was found that local sources (such as vehicle traffic) contributed ~45% to total concentrations and this fraction remained relatively constant throughout the study. A multilinear function regressed on these local and background concentrations better elucidated the sources contributing to UFP variability-background concentrations were largely covariate with SO2 emissions whereas local concentrations were more affected by NO emissions. The data in this study shows clear co-benefits to reducing UFP concentrations by targeting NOx and SOx emissions.

17.
J Expo Sci Environ Epidemiol ; 31(4): 628-640, 2021 07.
Article in English | MEDLINE | ID: mdl-32678304

ABSTRACT

BACKGROUND: Exposure to traffic-related air pollution (TRAP) is associated with increased incidence of several cardiopulmonary diseases. The elevated TRAP exposures of commuting environments can result in significant contributions to daily exposures. OBJECTIVES: To assess the personal TRAP exposures (UFPs, BC, PM2.5, and PM10) of the bus transit systems of Toronto, Ottawa, and Vancouver, Canada. Personal exposure models estimated the contribution of bus commuting to daily TRAP exposures. Associations between bus type and riding exposures and bus stop/station type and waiting exposures were estimated. RESULTS: Bus commuting (4.6% of the day) contributed ~59%(SD = 15%), 60%(SD = 20%), and 57%(SD = 18%) of daily PM2.5-Ba and 70%(SD = 19%), 64%(SD = 15%), and 70%(SD = 15%) of daily PM2.5-Fe, in Toronto, Ottawa, and Vancouver, respectively. Enclosed bus stations were found to be hotspots of PM2.5 and BC. Buses with diesel particulate filters (DPFs) and hybrid diesel/electric propulsion were found to have significantly lower in-bus PM2.5, UFP, and BC relative to 1983-2003 diesel buses in each city with the exception of UFP in Vancouver. SIGNIFICANCE: Personal exposures for traffic-related air pollutants were assessed for three Canadian bus transit systems. In each system, bus commuting was estimated to contribute significantly toward daily exposures of fine-fraction Ba and Fe as well as BC. Exposures while riding were associated with bus type for several pollutants in each city. These associations suggest the use of hybrid diesel/electric buses equipped with diesel particulate filters have improved air quality for riders.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Canada , Cities , Environmental Exposure/analysis , Environmental Monitoring , Humans , Motor Vehicles , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis
18.
Environ Pollut ; 268(Pt A): 115805, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33129130

ABSTRACT

Road traffic emissions are an increasingly important source of particulate matter in urban and non-road environments, where non-tailpipe emissions can contribute substantially to elevated levels of metals associated with adverse health effects. Thus, better characterization and quantification of traffic-emitted metals is warranted. In this study, real-world emission factors for fine particulate metals were determined from hourly x-ray fluorescence measurements over a three-year period (2015-2018) at an urban roadway and busy highway. Inter-site differences and temporal trends in real-world emission factors for metals were explored. The emission factors at both sites were within the range of past studies, and it was found that Ti, Fe, Cu, and Ba emissions were 2.2-3.0 times higher at the highway site, consistent with the higher proportion of heavy-duty vehicles. Weekday emission factors for some metals were also higher by 2.0-3.5 times relative to Sundays for Mn, Zn, Ca, and Fe, illustrating a dependence on fleet composition and roadway activity. Metal emission factors were also inversely related to relative humidity and precipitation, due to reduced road dust resuspension under wetter conditions. Correlation analysis revealed groups of metals that were co-emitted by different traffic activities and sources. Determining emission factors enabled the isolation of traffic-related metal emissions and also revealed that human exposure to metals in ambient air can vary substantially both temporally and spatially depending on fleet composition and traffic volume.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
20.
Environ Res ; 191: 110052, 2020 12.
Article in English | MEDLINE | ID: mdl-32860780

ABSTRACT

BACKGROUND: Ambient fine particulate matter (PM2.5) is associated with a wide range of acute and chronic health effects, including increased risk of respiratory infection. However, evidence specifically related to novel coronavirus disease (COVID-19) is limited. METHODS: COVID-19 case counts for 111 Canadian health regions were obtained from the COVID-19 Canada Open Data portal. Annual PM2.5 data for 2000-2016 were estimated from a national exposure surface based on remote sensing, chemical transport modelling and ground observations, and minimum and maximum temperature data for 2000-2015 were based on a national interpolated surface derived from thin-plate smoothing splines. Population counts and sociodemographic data by health region were obtained from the 2016 census, and health data (self-rated health and prevalence of smoking, obesity, and selected chronic diseases) by health region, were obtained from the Canadian Community Health Survey. Data on total number of COVID-19 tests and changes in mobility comparing post-vs. pre-introduction of social distancing measures were available by province. Data were analyzed using negative binomial regression models. RESULTS: After controlling for province, temperature, demographic and health characteristics and days since peak incidence by health region, long-term PM2.5 exposure exhibited a positive association with COVID-19 incidence (incidence rate ratio 1.07, 95% confidence interval 0.97-1.18 per µg/m3). This association was larger in magnitude and statistically significant in analyses excluding provinces that reported cases only for aggregated health regions, excluding health regions with less than median population density, and restricted to the most highly affected provinces (Quebec and Ontario). CONCLUSIONS: We observed a positive association between COVID-19 incidence and long-term PM2.5 exposure in Canadian health regions. The association was larger in magnitude and statistically significant in more highly affected health regions and those with potentially less exposure measurement error. While our results generate hypotheses for further testing, they should be interpreted with caution and require further examination using study designs less prone to bias.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Betacoronavirus , COVID-19 , Environmental Exposure/analysis , Humans , Incidence , Ontario , Particulate Matter/analysis , Particulate Matter/toxicity , Quebec , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...