Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 56(12): 8266-8277, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35616385

ABSTRACT

Nature archives record atmospheric mercury (Hg) depositions from directly emitted Hg and re-emitted legacy Hg. Tracing the legacy versus newly deposited Hg is still, however, challenging. Here, we measured Hg isotope compositions in three dated sediment cores at different distances from the Flin Flon smelter, the largest Canadian Hg sources to the atmosphere during the 1930s-2000s. During the smelter's operative period, Hg isotope compositions showed limited variations in the near-field lake (<10 km) sediments but were rather variable in middle- (20-75 km) and far-field lake (∼800 km) sediments. Only the post-2000 sediments in middle/far-field lakes showed significantly negative Hg isotope shifts, while sediments from the 1970s-1990s had Hg isotope values resembling those of near-field lake post-1930 sediments. We suggest that the smelter's peak Hg emissions during the 1970s-1990s, which coincided with the deployment of a super stack in the mid-1970s, largely increased the long-range dispersion of smelter plumes. For the top post-2000 sediments, the fugitive dust from ore tailings and terrestrial legacy Hg re-emissions dominated Hg deposition in near-field lakes and middle/far-field lakes, respectively. Our study demonstrates that legacy Hg remobilization now exports substantial amounts of Hg to ecosystems, highlighting the need for aggressive remediation measures of Hg-contaminated sites.


Subject(s)
Mercury , Water Pollutants, Chemical , Canada , Ecosystem , Environmental Monitoring , Geologic Sediments , Isotopes , Lakes , Mercury/analysis , Mercury Isotopes , Metals , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 822: 153430, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35090925

ABSTRACT

Mercury concentrations ([Hg]) in fish reflect complex biogeochemical and ecological interactions that occur at a range of spatial and biological scales. Elucidating these interactions is crucial to understanding and predicting fish [Hg], particularly at northern latitudes, where environmental perturbations are having profound effects on land-water-animal interactions, and where fish are a critical subsistence food source. Using data from eleven subarctic lakes that span an area of ~60,000 km2 in the Dehcho Region of Northwest Territories (Canada), we investigated how trophic ecology and growth rates of fish, lake water chemistry, and catchment characteristics interact to affect [Hg] in Northern Pike (Esox lucius), a predatory fish of widespread subsistence and commercial importance. Results from linear regression and piecewise structural equation models showed that 83% of among-lake variability in Northern Pike [Hg] was explained by fish growth rates (negative) and concentrations of methyl Hg ([MeHg]) in benthic invertebrates (positive). These variables were in turn influenced by concentrations of dissolved organic carbon, MeHg (water), and total Hg (sediment) in lakes, which were ultimately driven by catchment characteristics. Lakes in relatively larger catchments and with more temperate/subpolar needleleaf and mixed forests had higher [Hg] in Northern Pike. Our results provide a plausible mechanistic understanding of how interacting processes at scales ranging from whole catchments to individual organisms influence fish [Hg], and give insight into factors that could be considered for prioritizing lakes for monitoring in subarctic regions.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Esocidae , Fishes , Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 55(23): 15766-15775, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34792335

ABSTRACT

Mercury (Hg) is a pollutant of concern across Canada and transboundary anthropogenic Hg sources presently account for over 95% of national anthropogenic Hg deposition. This study applies novel statistical analyses of 82 high-resolution dated lake sediment cores collected from 19 regions across Canada, including nearby point sources and in remote regions and spanning a full west-east geographical range of ∼4900 km (south of 60°N and between 132 and 64°W) to quantify the recent (1990-2018) spatial and temporal trends in anthropogenic atmospheric Hg deposition. Temporal trend analysis shows significant synchronous decreasing trends in post-1990 anthropogenic Hg fluxes in western Canada in contrast to increasing trends in the east, with spatial patterns largely driven by longitude and proximity to known point source(s). Recent sediment-derived Hg fluxes agreed well with the available wet deposition monitoring. Sediment-derived atmospheric Hg deposition rates also compared well to the modeled values derived from the Hg model, when lake sites located nearby (<100 km) point sources were omitted due to difficulties in comparison between the sediment-derived and modeled values at deposition "hot spots". This highlights the applicability of multi-core approaches to quantify spatio-temporal changes in Hg deposition over broad geographic ranges and assess the effectiveness of regional and global Hg emission reductions to address global Hg pollution concerns.


Subject(s)
Mercury , Canada , Environmental Monitoring , Environmental Pollution , Geologic Sediments , Lakes , Mercury/analysis
4.
Environ Toxicol Chem ; 38(8): 1606-1624, 2019 08.
Article in English | MEDLINE | ID: mdl-31361364

ABSTRACT

Anticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges. We report and discuss 40 priority research questions following engagement of scientists and engineers in North America. These timely questions identify the importance of stimulating innovation and developing new methods, tools, and concepts in environmental chemistry and toxicology to improve assessment and management of chemical contaminants and other diverse environmental stressors. Grand challenges to achieving sustainable management of the environment are becoming increasingly complex and structured by global megatrends, which collectively challenge existing sustainable environmental quality efforts. Transdisciplinary, systems-based approaches will be required to define and avoid adverse biological effects across temporal and spatial gradients. Similarly, coordinated research activities among organizations within and among countries are necessary to address the priority research needs reported here. Acquiring answers to these 40 research questions will not be trivial, but doing so promises to advance sustainable environmental quality in the 21st century. Environ Toxicol Chem 2019;38:1606-1624. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Conservation of Natural Resources , Ecotoxicology , Research , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Humans , North America , Sustainable Development
5.
Environ Sci Technol ; 52(11): 6197-6207, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29737158

ABSTRACT

Hexabromocyclododecane (HBCDD) is a high concern environmental pollutant due to its persistent, bioaccumulative, and toxic properties. The spatial distribution of HBCDD was investigated in top predator fish (lake trout, walleye, or brook trout) collected in 2013 ( n = 165) from 19 sampling sites and in 2015 ( n = 145) from 20 sites across Canada. HBCDD was measurable in at least one sample at each sampling site regardless of sampling year with the exception of walleye from the south basin of Lake Winnipeg (2013). Sampling sites in or near the Laurentian Great Lakes had greater ΣHBCDD concentrations compared to locations to the west or east. The greatest mean ΣHBCDD concentration was 72.6 ng/g lw in fish from Lake Huron-Goderich (2015). Regardless of the sampling sites, α-HBCDD was the dominant congener followed by γ-HBCDD, whereas ß-HBCDD was barely detectable. In fish from the same waterbody there were comparable α/γ isomer concentration ratios. The greatest ratio was 20.8 in fish from Lake Ontario, whereas the lowest ratio was 6.3 for fish from Lac Memphrémagog (Québec) likely related to more recent emissions of a technical HBCDD mixture. Temporal trends of HBCDD in lake trout from Lake Ontario showed a significant decreasing trend for γ-HBCDD with a half-life estimate of 10 years over a 36-year period (1979-2015), and for α-HBCDD with a half-life of 11 years over the years of 2008 to 2015. The proportion of α-HBCDD to ΣHBCDD increased significantly during 1979 to 2015. The present study provided novel information on the isomer-specific HBCDDs in Canada freshwater fish.


Subject(s)
Lakes , Water Pollutants, Chemical , Animals , Canada , Environmental Monitoring , Hydrocarbons, Brominated , Ontario , Quebec
6.
PLoS One ; 11(5): e0153987, 2016.
Article in English | MEDLINE | ID: mdl-27135946

ABSTRACT

Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR.


Subject(s)
Climate Change , Environmental Monitoring/methods , Lakes , Oil and Gas Fields , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 509-510: 175-94, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25467220

ABSTRACT

This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 µg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine vertebrates in traditional diets. The known information on anadromous char is reviewed including population features, habitat, and harvests. Future Hg trend monitoring should focus on specific locations and harvest areas within these areas to better assess trends and influencing factors.


Subject(s)
Mercury/metabolism , Trout/metabolism , Water Pollutants, Chemical/metabolism , Animals , Canada , Environmental Monitoring , Food Chain
9.
Proc Natl Acad Sci U S A ; 110(5): 1761-6, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23297215

ABSTRACT

The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth's largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4-alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5-23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries.


Subject(s)
Ecosystem , Lakes/chemistry , Oil and Gas Fields , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Alberta , Ecology/methods , Ecology/statistics & numerical data , Ecology/trends , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Fresh Water/analysis , Fresh Water/chemistry , Fuel Oils/analysis , Geography , Geologic Sediments/analysis , Geologic Sediments/chemistry , Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Time Factors , Water Pollutants, Chemical/chemistry
10.
Sci Total Environ ; 438: 135-43, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22982939

ABSTRACT

Mercury (Hg) biomagnification in aquatic ecosystems remains a concern because this pollutant is known to affect the health of fish-eating wildlife and humans, and the fish themselves. The "rate" of mercury biomagnification is being assessed more frequently using stable nitrogen isotope ratios (δ(15)N), a measure of relative trophic position of biota within a food web. Within food webs and across diverse systems, log-transformed Hg concentrations are significantly and positively related to δ(15)N and the slopes of these models vary from one study to another for reasons that are not yet understood. Here we compared the rates of Hg biomagnification in 14 lake trout lakes from three provinces in Canada to understand whether any characteristics of the ecosystems explained this among-system variability. Several fish species, zooplankton and benthic invertebrates were collected from these lakes and analyzed for total Hg (fish only), methyl Hg (invertebrates) and stable isotopes (δ(15)N; δ(13)C to assess energy sources). Mercury biomagnification rates varied significantly across systems and were higher for food webs of larger (surface area), higher nutrient lakes. However, the slopes were not predictive of among-lake differences in Hg in the lake trout. Results indicate that among-system differences in the rates of Hg biomagnification seen in the literature may be due, in part, to differences in ecosystem characteristics although the mechanisms for this variability are not yet understood.


Subject(s)
Food Chain , Invertebrates/metabolism , Lakes/chemistry , Mercury/analysis , Mercury/pharmacokinetics , Trout/metabolism , Animals , Canada , Carbon Isotopes , Models, Chemical , Nitrogen Isotopes/analysis , Spectrophotometry, Atomic
11.
J Environ Monit ; 14(7): 1989-2003, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22652822

ABSTRACT

Recent studies have reported an increasing trend of mercury concentrations in walleye (Sander vitreus) from the Athabasca River, north eastern Alberta (Canada); these studies were based on three years of comparison and attributed the mercury increase to expanding oil sands developments in the region. In order to conduct a more comprehensive analysis of mercury trends in fish, we compiled an extensive database for walleye, lake whitefish (Coregonus clupeaformis), northern pike (Esox lucius) and lake trout (Salvelinus namaycush) using all available data obtained from provincial, federal, and industry-funded monitoring and other programs. Evidence for increasing trends in mercury concentrations were examined for each species by location and year also considering fish weight and length. In the immediate oil sands area of the Athabasca River, mercury concentrations decreased (p < 0.001) in walleye and lake whitefish over 1984-2011. In western Lake Athabasca and its delta, mercury concentrations decreased (p < 0.0001) in northern pike (1981-2009) although no trend was evident for walleye (1981-2005) and lake trout (1978-2009). Mercury concentrations in lake trout from Namur Lake, a small lake west of the oil sands area, were higher in 2007 than 2000 (p < 0.0001); it is difficult to ascribe this increase to an oil sands impact because similar increases in mercury concentrations have been observed in lake trout from similar sized lakes in the Northwest Territories. While mercury emissions rates have increased with oil sands development and the landscape become more disturbed, mercury concentrations remained low in water and sediments in the Athabasca River and its tributaries and similar to concentrations observed outside the development areas and in earlier decades. Our fish database was assembled from a series of studies that differed in study purpose, design, and analytical methods. Future monitoring programs investigating mercury trends in fish should be more rigorous in their design.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Alberta , Animals , Ecosystem , Mercury/analysis , Petroleum Pollution/statistics & numerical data , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
12.
Environ Toxicol Chem ; 30(7): 1564-75, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21523816

ABSTRACT

A nationwide study was conducted to examine concentrations of polybrominated diphenyl ethers (PBDEs) in top predatory fish, with a focus on lake trout (Salvelinus namaycush), across Canada, and to explore possible influences of food web processes. Concentrations of the three most abundant PBDE homolog groups (tetra-, penta-, and hexa-PBDEs) were, for the most part, higher in Great Lakes and Lake Champlain fish compared with fish from other systems. The Canadian Federal Environmental Quality Guideline for the penta-homolog was exceeded in 70% of the fish examined. However, virtually no guideline exceedances were found for other congeners. In general, PBDE-47 (a representative lower brominated congener) was significantly and positively correlated with fish length, weight, age, lipid content, and stable isotopes of nitrogen and carbon. Significant differences in the slopes of the PBDE-47/covariate relationships between sites prevented concentrations from being adjusted using an analysis of covariance (ANCOVA). However, plots showed that elevated concentrations of PBDE-47 in Great Lakes and Lake Champlain fish remained after accounting for the influence of covariates. In contrast, for PBDE-183 (a representative higher brominated congener), the relationships between fish concentrations and covariates were not consistent, which could be a result of biotransformation being more important in controlling its bioaccumulation. The data from the current study show an overall disconnect between fish PBDE concentrations and likely loadings, which may be caused by differences in food web processes between systems. Continued long-term fish contaminant monitoring is needed to evaluate potential risk to fish and their consumers. However, we also recommend sediment sampling and focused food web studies to provide information on PBDE inputs to the systems and mechanisms of biomagnification, respectively.


Subject(s)
Halogenated Diphenyl Ethers/metabolism , Trout/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data , Analysis of Variance , Animals , Biotransformation , Canada , Environmental Monitoring , Food Chain , Fresh Water/chemistry , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol ; 45(3): 964-70, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21210676

ABSTRACT

Mercury (Hg) profiles were compared to profiles of climate indicators including microfossil remains and algal-derived or S2 carbon (C) in dated sediment cores from 14 lakes spanning latitudinal and longitudinal gradients across the Canadian high and subarctic. Hg fluxes increased postindustrialization (post-∼1850) in 11 of these lakes (postindustrialization Hg fluxes (ΔHgF(F)) = 2-24 µg m(-2) y(-1)). Correction of HgF(F) for catchment contributions demonstrated that Hg deposition originating from catchment-independent factors, such as atmospheric deposition, increased since industrialization in all 14 lakes. Several of these lakes also showed postindustrial shifts in algal assemblages consistent with climate-induced changes. Eleven lakes showed post-1850s increases in S2F(F), suggesting that lake primary productivity has recently increased in the majority of our sites (ΔS2F(F) = 0.1-4 g m(-2) y(-1)). Other studies have interpreted significant relationships between Hg:S2 concentrations in Arctic sediment as support for the algal scavenging hypothesis, which postulates that Hg fluxes to Arctic sediments are largely driven by S2. However, in six of our lakes we observed no Hg:S2 relationship, and in one lake a significant negative Hg:S2 relationship was observed due to increased Hg and decreased S2 C deposition during the postindustrialization period. In six of the seven lakes where a significant positive Hg:S2 relationship was observed, algal assemblages either did not change through time or the timing of the shifts did not correspond to changes in Hg deposition. Our results demonstrate that, although Arctic lakes are experiencing a myriad of changes, including increased Hg and S2 deposition or changing algal assemblages, increased lake primary productivity does not appear to be driving changes in Hg fluxes to sediments.


Subject(s)
Climate Change , Fresh Water/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Air Pollutants/analysis , Arctic Regions , Atmosphere/chemistry , Canada , Environmental Monitoring , Geologic Sediments/chemistry
14.
Environ Toxicol Chem ; 27(10): 2169-78, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18444699

ABSTRACT

The biomagnification of polychlorinated biphenyls (PCBs) and major organochlorine pesticides (OCPs) was studied using lake trout (Salvelinus namaycush) and other food web organisms collected from 17 lakes in Canada and the northeastern United States between 1998 and 2001. Whole lake trout (n = 357) concentrations of the sum (Sigma) of 57 PCB congeners ranged between 1.67 and 2,890 ng/g wet weight (median 61.5 ng/g wet wt). Slimy sculpin had the highest mean concentrations of SigmaPCB of all forage fish (32-73 ng/g wet wt). Positive relationships between log (lipid wt) concentrations of PCB congener 153, PCB congener 52, p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, cis-chlordane, trans-nonachlor, or dieldrin and trophic level (determined using stable nitrogen isotope ratios) were found for most of the 17 food webs, indicating biomagnification of these PCBs and OCPs. The p,p'-dichlorodiphenyldichloroethylene had the highest trophic magnification factors (TMFs) of the 14 individual compounds studied, averaging 4.0 +/- 1.8 across the 17 lakes, followed by trans-nonachlor (3.6 +/- 1.5) and PCB congener 153 (3.4 +/- 1.2). Average TMFs for 14 individual PCBs or OCPs were significantly correlated with log octanol-water partition coefficient, implying that the rate of accumulation along the food web is dependent on hydrophobicity and recalcitrance. Significant correlations (p < 0.05) were found between TMFs of SigmaPCBs, hexachlorobenzene, alpha-hexachlorocyclohexane, and lindane and lake area, latitude, and longitude, but not for 11 other PCBs or OCPs. Overall, the results of the present study show that biomagnification of PCBs and most OCPs, as measured by TMFs, is only weakly influenced by such factors as latitude and longitude. Exceptions are hexachlorocyclohexane isomers and hexachlorobenzene, which had generally greater TMFs in northern lakes, possibly due to lower rates of elimination and biotransformation in the food web.


Subject(s)
Food Chain , Trout/physiology , Water Pollutants, Chemical/toxicity , Animals , Fresh Water/analysis , Hydrocarbons, Chlorinated/metabolism , Hydrocarbons, Chlorinated/toxicity , Invertebrates/metabolism , Pesticides/metabolism , Pesticides/toxicity , Phytoplankton/metabolism , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/metabolism
15.
Sci Total Environ ; 351-352: 94-147, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16225909

ABSTRACT

Over 1999-2002, an extensive series of contaminant studies was conducted on freshwater biota of Canada's Arctic and Subarctic regions. The majority of inorganic contaminant studies focused on mercury and fish. While mercury concentrations were low in benthic feeding fish such as whitefish, predatory fish such as lake trout, pike, and walleye frequently had mercury levels which exceeded 0.2 mug/g, the consumption guideline for frequent consumers of fish, and 0.5 microg/g, the guideline for the commercial use of fish. Numerous consumption advisories were issued for lakes along the Mackenzie River. Relatively high mercury levels appear to be due to a combination of relatively old fish populations (because of light fishing pressures) and tend to be more prevalent in smaller lakes where warmer summer water temperatures and watershed influences result in greater mercury and methyl mercury inputs. Mercury levels were substantially lower in char than in lake trout, possibly due to a combination of a less fish-rich diet, a colder environment, and smaller MeHg watershed inputs. Less research has been conducted on other metals but some, such as rubidium, show pronounced variations in concentration that may be related to geological influences. Temporal trend monitoring has revealed little evidence of declining mercury levels in fish that can be attributed to declining atmospheric inputs. Because mercury follows complex pathways in the environment, other factors may operate to counteract reductions in atmospheric mercury sources, e.g., climatic variability, changes in the commercial fishery, and interactions between fish species. Most organochlorine (OC) investigations were based on long term trend monitoring and focused on char (Cornwallis Island), burbot (Great Slave Lake, Yukon lakes, Slave River at Fort Smith, Mackenzie River at Fort Good Hope) and lake trout (Yukon lakes, Great Slave Lake). There was strong evidence of declining OC concentrations in char, particularly SigmaHCH and Sigmachlordane, which may reflect a response to declining atmospheric inputs. Endosulfan concentrations increased, as in the atmosphere. There also was evidence of declining OC concentrations in burbot in the Slave and Mackenzie rivers but not in Great Slave Lake and Yukon lakes. OC concentrations decreased in lake trout in Yukon lakes in the 2000s, most probably because of changes in the fish themselves (i.e., reduced lipid content, condition factor) and possibly climatic variability. Similarly, OCs declined in Great Slave Lake trout. New research on PDBEs and perfluorinated compounds determined that these contaminants are widespread in freshwater fish and concentrations may be increasing. Global warming is a major issue of concern for Arctic and Subarctic waters and may have adverse impacts on contaminant levels in fish and other biota. There is a need for contaminant studies in the north to be broadened to investigate climatic effects. In addition, monitoring studies should be broadened to consider factors affecting other aspects of fish biology. Foremost among these is integrating contaminant monitoring studies on lakes such as Lake Laberge and Great Slave Lake with stock assessment studies. Ecosystem based studies should be conducted on Great Slave Lake and Lake Laberge to more effectively understand contaminant trends and should consider inputs (atmospheric, river inflow, resupension), losses (sedimentation, volatilization), and biological pathways.


Subject(s)
Fishes , Food Contamination , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Arsenic/analysis , Canada , Environmental Monitoring , Greenhouse Effect , Humans , Metals, Heavy/analysis , Organic Chemicals/analysis , Selenium/analysis
16.
Oecologia ; 90(4): 560-571, 1992 Jul.
Article in English | MEDLINE | ID: mdl-28313577

ABSTRACT

Seasonal patterns of lipid reserves and lipid classes of dominant zooplankton in a hyper-eutrophic lake were examined in relation to algal food resources. Triacylglycerol was the principle lipid energy reserve in all five species examined. During the height of the yearlyAphanizomenon flos-aquae bloom, lipid levels of the principle herbivores (Daphnia pulex andLeptodiaptomus sicilis) and an omnivore (Diacyclops bicuspidatus thomasi), were at their lowest concentration, suggesting that this cyanobacterium is nutritionally inadequate. As the cyanobacterial bloom began to collapse, bacterial numbers increased rapidly. The increase in bacterial numbers coincided with a large increase in areal lipid energy reserves ofDiaphanosoma leuchtenbergianum andChydorus sphaericus. Examination of seasonal patterns in the biomass of different algal species suggested thatRhodomonas minuta andCryptomonas erosa played a key role in nutrition, lipid deposition, and reproduction ofD. pulex andL. sicilis.

SELECTION OF CITATIONS
SEARCH DETAIL
...