Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Chem Soc Rev ; 53(10): 5054-5082, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38595211

ABSTRACT

Numerous industrial processes utilise gaseous chemical feedstocks to produce useful chemical products. Atmospheric and other small molecule gases, including anthropogenic waste products (e.g. carbon dioxide), can be viewed as sustainable building blocks to access value-added chemical commodities and materials. While transition metal complexes have been well documented in the reduction and transformation of these substrates, molecular complexes of the terrestrially abundant alkaline earth metals have also demonstrated promise with remarkable reactivity reported towards an array of industrially relevant gases over the past two decades. This review covers low oxidation state and hydrido group 2 complexes and their role in the reduction and transformation of a selection of important gaseous substrates towards value-added chemical products.

2.
Chemistry ; : e202401005, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622992

ABSTRACT

In this contribution, we present "Birch-type", and other reductions of simple arenes by the potassium salt of an anionic magnesium dinitrogen complex, [{K(TCHPNON)Mg}2(µ-N2)] (TCHPNON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene), which acts as a masked dimagnesium(I) diradical in these reactions. This reagent is non-hazardous, easy-to-handle, and in some cases provides access to 1,4-cyclohexadiene reduction products under relatively mild reaction conditions. This system works effectively to reduce benzene, naphthalene and anthracene through magnesium-bound "Birch-type" reduction intermediates. Cyclohexadiene products can be subsequently released from the magnesium centres by protonolysis with methanol. In contrast, the reduction of substituted arenes is less selective and involves competing reaction pathways. For toluene and 1,3,5-triphenylbenzene, the structural authentication of "Birch-type" reduction intermediates is conclusive, although the formation of corresponding 1,4-cyclohexadiene derivatives was low yielding. Reduction of anisole did not yield an isolable "Birch-type" intermediate, but instead gave a C-O activation product. Treating triphenylphosphine with [{K(TCHPNON)Mg}2(µ-N2)] resulted in the extrusion of both biphenyl and dinitrogen to afford a magnesium(II) phosphanide [{K(TCHPNON)Mg(µ-PPh2)}2]. Reduction of fluorobenzene proceeded via C-F activation of the arene, and isolation of the magnesium(II) fluoride [{K(TCHPNON)Mg(µ-F)}2]. Finally, the two-electron reduction of 1,3,5,7-cyclooctatetraene (COT) with [{K(TCHPNON)Mg}2(µ-N2)] yielded a complex, [{K(TCHPNON)Mg}2(µ-COT)], incorporating the aromatic dianion (COT2-).

3.
Inorg Chem ; 63(12): 5718-5726, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38471088

ABSTRACT

An extremely bulky p-terphenyl bis(aniline), p-C6H4{C6H4[N(H)TCHP]-2}2 (TCHP = 2,4,6-tricyclohexylphenyl) TCHPTerphH2, has been developed. Deprotonation of a less bulky analogue, DipTerphH2 (Dip = 2,6-diisopropylphenyl), with BePh2 affords the bimetallic system, [(BePh)2(µ-DipTerph)] 1. Treating either TCHPTerphH2 or DipTerphH2 with Mg{CH2(SiMe3)}2 gives the monomeric bis(anilide) complexes [Mg(ArTerph)] (Ar = Dip 2, TCHP 3) which display rare examples of η6-arene coordination to the metal center. Treating 2 with THF leads to partial dissociation of the Mg···arene interaction and formation of [Mg(DipTerph)(THF)] 4. Reactions of the bis(aniline)s with the group 2 metal amides [M{N(SiMe3)2}2] afford dimeric, structurally analogous compounds [{M(ArTerph)}2] (Ar = Dip, M = Ca 5, Sr 6, Ba 7; Ar = TCHP, M = Ca 8, Sr 9, Ba 10) which display intermolecular M···arene interactions in the solid state. Computational studies have shown that the intramolecular M···Î·6-arene interactions in models of the ether-free metal bis(anilide) compounds are largely electrostatic in nature. Reductions of these compounds with alkali metals led to mixtures of unidentified products.

4.
Chemistry ; 30(27): e202400681, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38417144

ABSTRACT

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

5.
Chem Commun (Camb) ; 60(8): 1016-1019, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38170497

ABSTRACT

Reduction of the magnesium(II) diamide [Mg(TripNON)] (TripNON = 4,5-bis(2,4,6-triisopropylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5% w/w K/KI leads to a good yield of a dianionic dimagnesium(I) species, as its potassium salt, [{K(TripNON)Mg}2]. An X-ray crystallographic analysis shows the molecule to contain a very long Mg-Mg bond (3.137(2) Å). The formation of [{K(TripNON)Mg}2] contrasts with a previously reported reduction of a magnesium(II) complex incorporating a bulkier diamide ligand, which instead afforded a magnesium-dinitrogen complex. In the current study, [{K(TripNON)Mg}2] has been shown to be a viable reagent for the reductive activation of CO, H2 and N2O.

6.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786922

ABSTRACT

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

7.
PLoS Pathog ; 19(12): e1011887, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38157366

ABSTRACT

The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction. EGFR is required for the recruitment of clathrin to HCV in a phosphorylation-independent manner. EGFR phosphorylation is required for virion internalization at a stage following the recruitment of clathrin. HCV entry activates the RAF-MEK-ERK signaling pathway downstream of EGFR phosphorylation. This signaling pathway regulates the sorting and maturation of internalized HCV into APPL1- and EEA1-associated early endosomes, which form the site of virion uncoating. The tight junction proteins, CLDN1 and OCLN, function at two distinct stages of HCV entry. Despite its appreciated function as a "late receptor" in HCV entry, CLDN1 is required for efficient HCV virion accumulation at the tight junction. Huh-7.5 cells lacking CLDN1 accumulate HCV virions primarily at the initial basolateral surface. OCLN is required for the late stages of virion internalization. This study produced further insight into the unusually complex HCV endocytic process.


Subject(s)
Claudin-1 , Hepacivirus , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Clathrin , Claudin-1/genetics , Claudin-1/metabolism , ErbB Receptors , Hepacivirus/physiology , Hepatitis C/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Occludin/metabolism , Virus Internalization
8.
J Virol ; 97(11): e0141423, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37943046

ABSTRACT

IMPORTANCE: The wide endemic range of mosquito-vectored flaviviruses-such as Zika virus and dengue virus serotypes 1-4-places hundreds of millions of people at risk of infection every year. Despite this, there are no widely available vaccines, and treatment of severe cases is limited to supportive care. An avenue toward development of more widely applicable vaccines and targeted therapies is the characterization of monoclonal antibodies that broadly neutralize all these viruses. Here, we measure how single amino acid mutations in viral envelope protein affect neutralizing antibodies with both broad and narrow specificities. We find that broadly neutralizing antibodies with potential as vaccine prototypes or biological therapeutics are quantifiably more difficult to escape than narrow, virus-specific neutralizing antibodies.


Subject(s)
Antibodies, Viral , Broadly Neutralizing Antibodies , Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Animals , Humans , Cross Reactions , Mutation , Vaccines , Viral Envelope , Viral Envelope Proteins/genetics , Zika Virus/genetics , Zika Virus Infection/immunology , Zika Virus Infection/therapy
9.
Chemistry ; 29(71): e202302903, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37786384

ABSTRACT

The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.

10.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808848

ABSTRACT

Zika virus and dengue virus are co-circulating flaviviruses with a widespread endemic range. Eliciting broad and potent neutralizing antibodies is an attractive goal for developing a vaccine to simultaneously protect against these viruses. However, the capacity of viral mutations to confer escape from broadly neutralizing antibodies remains undescribed, due in part to limited throughput and scope of traditional approaches. Here, we use deep mutational scanning to map how all possible single amino acid mutations in Zika virus envelope protein affect neutralization by antibodies of varying breadth and potency. While all antibodies selected viral escape mutations, the mutations selected by broadly neutralizing antibodies conferred less escape relative to those selected by narrow, virus-specific antibodies. Surprisingly, even for broadly neutralizing antibodies with similar binding footprints, different single mutations led to escape, indicating distinct functional requirements for neutralization not captured by existing structures. Additionally, the antigenic effects of mutations selected by broadly neutralizing antibodies were conserved across divergent, albeit related, flaviviruses. Our approach identifies residues critical for antibody neutralization, thus comprehensively defining the as-yet-unknown functional epitopes of antibodies with clinical potential.

11.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37738983

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/virology , Immunity, Innate , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
12.
Inorg Chem ; 62(35): 14393-14401, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37602922

ABSTRACT

Reactions of the series of alkali metal amides M(HMDS) (M = Li-Cs; HMDS = [N(SiMe3)2]-) with the neutral magnesium(II) hydride compound [Mg(BDIDipp)(µ-H)]2 (BDIDipp = [CH{C(Me)NDipp}2], Dipp = 2,6-iPr2-C6H3) have been carried out. When M = Li or Na, the reactions yielded Mg(BDIDipp)(HMDS) and MH as the primary products. In the sodium amide reaction, [Na2(HMDS)][{Mg(BDIDipp)}2(H)3] was obtained as a low-yield by-product. When M = K-Cs, the reactions gave the group 1 metal hydrido-magnesiates, M2[Mg(BDIDipp)(HMDS)(H)]2·(benzene)n (n = 0 or 1), the thermal stability of which increases with the increasing molecular weight of the alkali metal involved. Reactions of Cs2[Mg(BDIDipp)(HMDS)(H)]2·(benzene) with 18-crown-6 and CO gave the first monomeric alkali metal hydrido-magnesiate [Cs(18-crown-6)][Mg(BDIDipp)(HMDS)(H)] and the ethenediolate complex Cs2[{Mg(BDIDipp)(HMDS)}2(µ-C2H2O2)], respectively. The new synthetic route to alkali metal hydrido-magnesiates described herein may facilitate further reactivity studies of this rare compound class.

13.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37429823

ABSTRACT

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

14.
Angew Chem Int Ed Engl ; 62(37): e202308347, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37475607

ABSTRACT

The activation of dinitrogen (N2 ) by transition metals is central to the highly energy intensive, heterogeneous Haber-Bosch process. Considerable progress has been made towards more sustainable homogeneous activations of N2 with d- and f-block metals, though little success has been had with main group metals. Here we report that the reduction of a bulky magnesium(II) amide [(TCHP NON)Mg] (TCHP NON=4,5-bis(2,4,6-tricyclohexylanilido)-2,7-diethyl-9,9-dimethyl-xanthene) with 5 % w/w K/KI yields the magnesium-N2 complex [{K(TCHP NON)Mg}2 (µ-N2 )]. DFT calculations and experimental data show that the dinitrogen unit in the complex has been reduced to the N2 2- dianion, via a transient anionic magnesium(I) radical. The compound readily reductively activates CO, H2 and C2 H4 , in reactions in which it acts as a masked dimagnesium(I) diradical.

15.
Chem Sci ; 14(23): 6278-6288, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325153

ABSTRACT

We report the reaction of the potassium aluminyl, K[Al(NON)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) with a series of isocyanide substrates (R-NC). In the case of tBu-NC, degradation of the isocyanide was observed generating an isomeric mixture of the corresponding aluminium cyanido-κC and -κN compounds, K[Al(NON)(H)(CN)]/K[Al(NON)(H)(NC)]. The reaction with 2,6-dimethylphenyl isocyanide (Dmp-NC), gave a C3-homologation product, which in addition to C-C bond formation showed dearomatisation of one of the aromatic substituents. In contrast, using adamantyl isocyanide Ad-NC allowed both the C2- and C3-homologation products to be isolated, allowing a degree of control to be exercised over the chain growth process. These data also show that the reaction proceeds through a stepwise addition, supported in this study by the synthesis of the mixed [(Ad-NC)2(Dmp-NC)]2- product. Computational analysis of the bonding within the homologised products confirm a high degree of multiple bond character in the exocyclic ketenimine units of the C2- and C3-products. In addition, the mechanism of chain growth was investigated, identifying different possible pathways leading to the observed products, and highlighting the importance of the potassium cation in formation of the initial C2-chain.

16.
Nat Microbiol ; 8(6): 1108-1122, 2023 06.
Article in English | MEDLINE | ID: mdl-37142773

ABSTRACT

Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.


Subject(s)
Chiroptera , Morbillivirus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Zoonoses , Morbillivirus/genetics , Cell Line
17.
Chem Commun (Camb) ; 59(15): 2134-2137, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727241

ABSTRACT

Reduction of the heteroleptic Ln(III) precursors [Ln(Tp)2(OTf)] (Tp = hydrotris(1-pyrazolyl)borate; OTf = triflate) with either an aluminyl(I) anion or KC8 yielded the adduct-free homoleptic Ln(II) complexes dimeric 1-Eu [{Eu(Tp)(µ-κ1:η5-Tp)}2] and monomeric 1-Yb [Yb(Tp)2]. Complexes 1-Ln have good solubility and stability in both non-coordinating and coordinating solvents. Reaction of 1-Ln with 2 Ph3PO yielded 1-Ln(OPPh3)2. All complexes are intensely coloured and 1-Eu is photoluminescent. The electronic absorption data show the 4f-5d electronic transitions in Ln(II). Single-crystal X-ray diffraction data reveal first µ-κ1:η5-coordination mode of the unsubstituted Tp ligand to lanthanides in 1-Eu.

18.
Chem Commun (Camb) ; 59(5): 503-519, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36541674

ABSTRACT

The chemistry of low valent p-block metal complexes continues to elicit interest in the research community, demonstrating reactivity that replicates and in some cases exceeds that of their more widely studied d-block metal counterparts. The introduction of the first aluminyl anion, a complex containing a formally anionic Al(I) centre charge balanced by an alkali metal (AM) cation, has established a platform for a new area of chemical research. The chemistry displayed by aluminyl compounds is expanding rapidly, with examples of reactivity towards a diverse range of small molecules and functional groups now reported in the literature. Herein we present an account of the structure and reactivity of the growing family of aluminyl compounds. In this context we examine the structural relationships between the aluminyl anion and the AM cations, which now include examples of AM = Li, Na, K, Rb and Cs. We report on the ability of these compounds to engage in bond-breaking and bond-forming reactions, which is leading towards their application as useful reagents in chemical synthesis. Furthermore we discuss the chemistry of bimetallic complexes containing direct Al-M bonds (M = Li, Na, K, Mg, Ca, Cu, Ag, Au, Zn) and compounds with Al-E multiple bonds (E = NR, CR2, O, S, Se, Te), where both classes of compound are derived directly from aluminyl anions.

19.
Inorg Chem ; 61(49): 19838-19846, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503245

ABSTRACT

We report the oxidative addition of phenylsilane to the complete series of alkali metal (AM) aluminyls [AM{Al(NONDipp)}]2 (AM = Li, Na, K, Rb, and Cs). Crystalline products (1-AM) have been isolated as ether or THF adducts, [AM(L)n][Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, L = Et2O, n = 1; AM = Cs, L = THF, n = 2). Further to this series, the novel rubidium rubidiate, [{Rb(THF)4}2(Rb{Al(NONDipp)(H)(SiH2Ph)}2)]+ [Rb{Al(NONDipp)(H)(SiH2Ph)}2]-, was isolated during an attempted recrystallization of Rb[Al(NONDipp)(H)(SiH2Ph)] from a hexane/THF mixture. Structural and spectroscopic characterizations of the series 1-AM confirm the presence of µ-hydrides that bridge the aluminum and alkali metals (AM), with multiple stabilizing AM···π(arene) interactions to either the Dipp- or Ph-substituents. These products form a complete series of soluble, alkali metal (hydrido) aluminates that present a platform for further reactivity studies.


Subject(s)
Metals, Alkali , Metals, Alkali/chemistry , Sodium/chemistry , Lithium , Rubidium/chemistry , Ions
20.
bioRxiv ; 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36299428

ABSTRACT

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...