Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 207(2): 421-435, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34233909

ABSTRACT

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Membrane Proteins/immunology , Animals , Endosomes/immunology , Female , Genes, MHC Class II/immunology , Golgi Apparatus/immunology , Immunity, Innate/immunology , Intestinal Mucosa/immunology , Ion Channels/immunology , Lymphocytes/immunology , Lysosomes/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/immunology , Tretinoin/immunology
2.
Transplantation ; 105(4): 832-841, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32433241

ABSTRACT

BACKGROUND: Kidney transplantation is the therapeutic of choice for patients with kidney failure. While immunosuppressive drugs can control graft rejection, their use is associated with increased infections and cancer, and they do not effectively control chronic graft rejection. Cell therapy is an attractive strategy to minimize the use of pharmacological drugs. METHODS: We recently developed a protocol to generate human monocyte-derived autologous tolerogenic dendritic cells (ATDCs) from healthy volunteers. Herein, we transferred the ATDC manufacturing protocol to a Good Manufacturing Practice (GMP)-compliant facility. Furthermore, we compared the phenotype and in vitro functions of ATDCs generated from patients with end-stage renal disease to those generated from healthy volunteers. RESULTS: We describe the critical steps for GMP-compliant production of ATDCs and define the quality criteria required to allow release of the cell products. Furthermore, we showed that ATDCs generated from healthy volunteers and patients with kidney failure display the same tolerogenic profile based on their phenotype, resistance to maturation, and ability to modulate T-cell responses. CONCLUSIONS: Together, these results allowed us to define the production process and the quality criteria for the release of ATDCs before their administration in patients receiving a kidney transplant.


Subject(s)
Dendritic Cells/immunology , Kidney Failure, Chronic/immunology , Self Tolerance , Case-Control Studies , Cell Proliferation , Cell Separation , Cell Transplantation , Cells, Cultured , Coculture Techniques , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Humans , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/surgery , Phenotype , Time Factors , Transplantation Tolerance , Transplantation, Autologous
3.
Cell Metab ; 30(6): 1075-1090.e8, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31801055

ABSTRACT

Cell therapy is a promising strategy for treating patients suffering from autoimmune or inflammatory diseases or receiving a transplant. Based on our preclinical studies, we have generated human autologous tolerogenic dendritic cells (ATDCs), which are being tested in a first-in-man clinical trial in kidney transplant recipients. Here, we report that ATDCs represent a unique subset of monocyte-derived cells based on phenotypic, transcriptomic, and metabolic analyses. ATDCs are characterized by their suppression of T cell proliferation and their expansion of Tregs through secreted factors. ATDCs produce high levels of lactate that shape T cell responses toward tolerance. Indeed, T cells take up ATDC-secreted lactate, leading to a decrease of their glycolysis. In vivo, ATDCs promote elevated levels of circulating lactate and delay graft-versus-host disease by reducing T cell proliferative capacity. The suppression of T cell immunity through lactate production by ATDCs is a novel mechanism that distinguishes ATDCs from other cell-based immunotherapies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immune Tolerance , Immunosuppression Therapy , Lactic Acid/biosynthesis , Animals , Autoimmune Diseases/therapy , CD4-Positive T-Lymphocytes/cytology , Cells, Cultured , Dendritic Cells/metabolism , Female , Humans , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Mice, SCID , Monocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...