Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Org Chem ; 88(9): 6192-6202, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37027833

ABSTRACT

Oxazolines and thiazolines are important constituents of bioactive natural products and pharmaceuticals. Here, we report the development of an effective and practical method of oxazoline and thiazoline formation, which can facilitate the synthesis of natural products, chiral ligands, and pharmaceutical intermediates. This method capitalized on a Mo(VI) dioxide catalyst stabilized by substituted picolinic acid ligands, which is tolerant to many functional groups that would otherwise be sensitive to highly electrophilic alternative reagents.

2.
Angew Chem Int Ed Engl ; 61(31): e202207153, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35653581

ABSTRACT

Non-proteogenic amino acids and functionalized peptides are important motifs in modern drug discovery. Here we report that AlaB can serve as universal building blocks in the synthesis of a diverse collection of modified amino acids, peptides, and proteins. First, we develop the synthesis of AlaB from redox-active esters of aspartic acid resulting in a series of ß-boronoalanine derivatives. Next, we show that AlaB can be integrated into automated oligopeptide solid-phase synthesis. AlaB is compatible with common transformations used in preparative peptide chemistry such as native chemical ligation and radical desulfurization as showcased by total synthesis of AlaB -containing ubiquitin. Furthermore, AlaB reagents participate in Pd-catalyzed reactions, including C-C cross-couplings and macrocyclizations. Taken together, AlaB synthons are practical reagents to access modified peptides, proteins, and in the synthesis of cyclic/stapled peptides.


Subject(s)
Amino Acids , Peptides , Amino Acids/chemistry , Indicators and Reagents , Peptides/chemistry , Peptides, Cyclic , Proteins , Solid-Phase Synthesis Techniques
3.
J Inorg Biochem ; 232: 111819, 2022 07.
Article in English | MEDLINE | ID: mdl-35428021

ABSTRACT

Naturally-occurring variants of human cytochrome c (Cytc) that induce thrombocytopenia IV occur within Ω-loop C (residues 40-57). These variants enhance the peroxidase activity of human Cytc apparently by facilitating access to the heme by destabilizing Ω-loops C and D (residues 70-85). Given the importance of peroxidase activity in the early stages of apoptosis, we identified three sites with the EVmutation algorithm in or near Ω-loop C that coevolve and differ between yeast iso-1-Cytc and human Cytc. We prepared iso-1-Cytc variants with all possible combinations of the S40T, V57I and N63T substitutions to determine if these residues decrease the peroxidase activity of iso-1-Cytc to that of human Cytc producing an effective off state for a peroxidase signaling switch. At pH 6 and above, all variants significantly decreased peroxidase activity. However, the correlation of peroxidase activity with local and global stability, expected if cooperative unfolding of Ω-loops C and D is required for peroxidase activity, was generally poor. The m-values derived from the guanidine hydrochloride dependence of the kinetics of imidazole binding to horse Cytc, which is well-characterized by native-state hydrogen exchange methods, and K72A/K73A/K79A iso-1-Cytc show that local structural fluctuations and not subglobal cooperative unfolding of Ω-loops C and D are sufficient to permit binding of a small molecule like peroxide to the heme. A 2.46 Å structure of N63T iso-1-Cytc identifies a change to a hydrogen bond network linking Ω-loops C and D that could modulate the local fluctuations needed for the intrinsic peroxidase activity of Cytc.


Subject(s)
Cytochromes c , Saccharomyces cerevisiae , Animals , Cytochromes c/chemistry , Heme/chemistry , Horses , Humans , Hydrogen-Ion Concentration , Peroxidase/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism
4.
ACS Catal ; 12(13): 7789-7797, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-37138902

ABSTRACT

Direct peptide and protein activation is a challenging transformation because of the stabilizing effect of the amide group. While enzymes can be considered as prototypical systems that have evolved to achieve high selectivity and specificity, small-molecule catalysts that functionalize the amide group may accommodate a much larger selection of substrates but currently remain scarce. Here, by combining the desired features from both catalytic regimes we designed an artificial cyclodehydratase, a catalytic system for the site-selective modification of peptides and natural products by engrafting heterocycles into their scaffolds. The catalytic system features a molybdenum(VI) center that was decorated with a sterically congested tripod ligand. The optimized catalyst can introduce azolines into small molecules, natural products, and oligopeptides with high efficiency and minimal waste. We further demonstrate the utility of the new protocol in the direct functionalization of a single amide group in the presence of up to seven other chemically similar positions and in the direct conversion of these groups into amines and thioamides. This new mechanistic paradigm may address an unmet need for a general method for the selective and sustainable functionalization of peptides and natural products.

5.
J Am Chem Soc ; 142(31): 13435-13441, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32639730

ABSTRACT

High-valent FeIV═O intermediates with a terminal metal-oxo moiety are key oxidants in many enzymatic and synthetic C-H bond oxidation reactions. While generating stable metal-oxo species for late transition metals remains synthetically challenging, notably, a number of high-valent non-oxo-metal species of late transition metals have been recently described as strong oxidants that activate C-H bonds. In this work, we obtained an unprecedented mononuclear CoIV-dinitrate complex (2) upon one-electron oxidation of its Co(III) precursor supported by a tridentate dianionic N3 ligand. 2 was structurally characterized by X-ray crystallography, showing a square pyramidal geometry with two coordinated nitrate anions. Furthermore, characterization of 2 using combined spectroscopic and computational methods revealed that 2 is a low-spin (S = 1/2) Co(IV) species with the unpaired electron located on the cobalt dz2 orbital, which is well positioned for substrate oxidations. Indeed, while having a high thermal stability, 2 is able to cleave sp3 C-H bonds up to 87 kcal/mol to afford rate constants and kinetic isotope effects (KIEs) of 2-6 that are comparable to other high-valent metal oxidants. The ability to oxidize strong C-H bonds has yet to be observed for CoIV-O and CoIII═O species previously reported. Therefore, 2 represents the first high-valent Co(IV) species that is both structurally characterized by X-ray crystallography and capable of activating strong C-H bonds.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Nitrates/chemistry , Crystallography, X-Ray , Density Functional Theory , Models, Molecular , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL