Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Chem ; 64(11): 7241-7260, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34028270

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel are established as the primary causative factor in the devastating lung disease cystic fibrosis (CF). More recently, cigarette smoke exposure has been shown to be associated with dysfunctional airway epithelial ion transport, suggesting a role for CFTR in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, the identification and characterization of a high throughput screening hit 6 as a potentiator of mutant human F508del and wild-type CFTR channels is reported. The design, synthesis, and biological evaluation of compounds 7-33 to establish structure-activity relationships of the scaffold are described, leading to the identification of clinical development compound icenticaftor (QBW251) 33, which has subsequently progressed to deliver two positive clinical proofs of concept in patients with CF and COPD and is now being further developed as a novel therapeutic approach for COPD patients.


Subject(s)
Aminopyridines/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Administration, Oral , Aminopyridines/metabolism , Aminopyridines/therapeutic use , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Deletion , Half-Life , Humans , Protein Binding , Pulmonary Disease, Chronic Obstructive/drug therapy , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship
2.
Bioorg Med Chem ; 21(21): 6582-91, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24021582

ABSTRACT

Optimization of a 7-azaindole-3-acetic acid CRTh2 receptor antagonist chemotype derived from high throughput screening furnished a highly selective compound NVP-QAV680 with low nM functional potency for inhibition of CRTh2 driven human eosinophil and Th2 lymphocyte activation in vitro. The molecule exhibited good oral bioavailability in the rat, combined with efficacy in rodent CRTh2-dependent mechanistic and allergic disease models and was suitable for clinical development.


Subject(s)
Indolizines/chemistry , Receptors, Immunologic/antagonists & inhibitors , Receptors, Prostaglandin/antagonists & inhibitors , Administration, Oral , Animals , CHO Cells , Cricetinae , Cricetulus , Dermatitis, Contact/drug therapy , Disease Models, Animal , Drug Evaluation, Preclinical , Eosinophils/drug effects , Eosinophils/metabolism , Half-Life , Humans , Hypersensitivity/drug therapy , Indolizines/pharmacokinetics , Indolizines/therapeutic use , Mice , Mice, Inbred BALB C , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Structure-Activity Relationship , Th2 Cells/immunology , Th2 Cells/metabolism
3.
J Pharm Biomed Anal ; 54(4): 722-9, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21126842

ABSTRACT

High non-specific binding (NSB) is one of the most common reasons for candidate failure in potential positron emission tomography (PET) radiotracer development. It is of interest to develop high throughput in vitro methods for predicting non-specific binding prior to radiolabeling, which would help guide radiotracer candidate selection and assist decision making in new radiotracer discovery. We evaluated several electrokinetic chromatographic (EKC) systems to help identify PET ligands with low non-specific binding characteristics by mimicking the ligand-brain tissue interaction. The measured retention factors of tracers in clinical use or terminated candidates within AOT vesicle EKC systems were compared with literature in vitro or in vivo NSB data. We conclude that there is a statistical correlation between the chromatographic retention parameters of tested drugs and their NSB. The AOT vesicle EKC method can provide NSB in vitro trend analysis for a large number of drug candidates early in the novel radiotracer discovery process with minimal resources.


Subject(s)
Drug Discovery/methods , Liposomes/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Surface-Active Agents/chemistry , Animals , Blood-Brain Barrier/metabolism , Brain/diagnostic imaging , Brain/metabolism , Chromatography, High Pressure Liquid , Chromatography, Micellar Electrokinetic Capillary , Drug Discovery/economics , High-Throughput Screening Assays , Humans , Kinetics , Ligands , Models, Biological , Radioactive Tracers , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Time Factors
4.
J Chromatogr A ; 1216(12): 2439-48, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19178914

ABSTRACT

A novel porous zwitterionic monolith was prepared by thermal co-polymerisation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and ethylene glycol dimethacrylate (EDMA) within 100 microm I.D. capillaries. Mercury intrusion porosimetry, scanning electron microscopy (SEM), micro-HPLC (micro-HPLC), elemental analysis and zeta-potential analysis were used to evaluate the monolithic structure. No evidence of swelling or shrinking of the monolith in different polarity solvents was observed. A typical hydrophilic liquid chromatography (HILIC) mechanism was observed at high organic solvent content (acetonitrile >60%). The phosphorylcholine (PC) functionality has both a positively charged quaternary ammonium and a negatively charged phosphate group. For charged analytes, a weak electrostatic interaction was also observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(MPC-co-EDMA) monolithic column. The optimised poly(MPC-co-EDMA) monolith showed very good selectivities for a range of polar test analytes, especially small peptides. This might be ascribed to the good biocompatibility of PC functionality. At low organic solvent content, baseline separation was also observed for a test mixture of seven alkylphenones by a reversed-phase separation mechanism.


Subject(s)
Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Phosphorylcholine/chemistry , Polymers/chemistry , Hydrogen-Ion Concentration , Ketones/analysis , Microscopy, Electron, Scanning , Peptides/analysis , Permeability , Porosity , Purines/analysis , Pyrimidines/analysis , Reproducibility of Results , Salts/chemistry , Sensitivity and Specificity , Solvents/chemistry , Static Electricity
5.
Electrophoresis ; 29(17): 3674-84, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18803182

ABSTRACT

Lung tissue distribution of an inhaled drug is important for its potency in the airways and with minimum systemic effects within its dose range. As the lung has the smallest diffusion distance of all the organs in the body and negligible diffusion delays, the characteristics of drug distribution in the lung will mainly depend on drug binding to both tissue and plasma protein. This research aims to develop and evaluate surfactant vesicle electrokinetic chromatography (SEKC) methods for high throughput profile prediction of tissue distribution for inhaled drugs. Several electrokinetic chromatography methods reported in the literature, as well as immobilised artificial membrane chromatography, were compared and evaluated in respect to chromatographic characteristics and statistical correlations. Among these methods, the docusate sodium salt (AOT) SEKC system showed good reproducibility, short run time, and the highest selectivity for alkylphenone test compounds. It also showed a significant statistical correlation between the retention of inhaled drugs and their in vivo volume of distribution at steady-state (V(ss)) in whole human body neglecting the plasma protein-binding differences. Stronger correlations were observed between the AOT SEKC retention of a series of basic drugs and their rat lung tissue-to-plasma water partitioning coefficient (K(pu)), which is affected only by drug binding to the tissue constituent. Further, on comparing correlations between AOT SEKC retention and K(pu) at various rat tissues, it was observed that the strongest correlation was with lung tissue distribution, while the weakest was with brain tissue distribution.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Surface-Active Agents/chemistry , Administration, Inhalation , Reference Standards , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL