Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446371

ABSTRACT

Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory-e.g., the amygdala and hippocampus-are dysregulated in PTSD, the pathophysiology of the disorder is not well defined and therefore, pharmacological interventions are extremely limited. Because stress hormones norepinephrine and cortisol (corticosterone in rats) are heavily implicated in the disorder, we explored whether preemptively and systemically antagonizing ß-adrenergic and glucocorticoid receptors with propranolol and mifepristone are sufficient to mitigate pathological changes in synaptic plasticity, gene expression, and anxiety induced by a modified social defeat (SD) stress protocol. Young adult, male Sprague Dawley rats were initially pre-screened for anxiety. The rats were then exposed to SD and chronic light stress to induce anxiety-like symptoms. Drug-treated rats were administered propranolol and mifepristone injections prior to and continuing throughout SD stress. Using competitive ELISAs on plasma, field electrophysiology at CA1 of the ventral hippocampus (VH) and the basolateral amygdala (BLA), quantitative RT-PCR, and behavior assays, we demonstrate that our SD stress increased anxiety-like behavior, elevated long-term potentiation (LTP) in the VH and BLA, and altered the expression of mineralocorticoid, glucocorticoid, and glutamate receptors. These measures largely reverted to control levels with the administration of propranolol and mifepristone. Our findings indicate that SD stress increases LTP in the VH and BLA and that prophylactic treatment with propranolol and mifepristone may have the potential in mitigating these and other stress-induced effects.


Subject(s)
Mifepristone , Rodentia , Rats , Male , Animals , Mifepristone/pharmacology , Rats, Sprague-Dawley , Propranolol/pharmacology , Social Defeat , Hippocampus/metabolism , Neuronal Plasticity , Amygdala/metabolism , Gene Expression , Stress, Psychological/complications
2.
ACS Chem Neurosci ; 13(10): 1534-1548, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35482592

ABSTRACT

Fast-scan cyclic voltammetry (FSCV) is an effective tool for measuring dopamine release and clearance throughout the brain, especially the striatum where dopamine terminals are abundant and signals are heavily regulated by release machinery and the dopamine transporter (DAT). Peak height measurement is perhaps the most common method for measuring dopamine release, but it is influenced by changes in clearance. Michaelis-Menten-based modeling has been a standard in measuring dopamine clearance, but it is problematic in that it requires experimenter fitted modeling subject to experimenter bias. This study presents the use of the first derivative (velocity) of evoked dopamine signals as an alternative approach for measuring and distinguishing dopamine release from clearance. Maximal upward velocity predicts reductions in dopamine peak height due to D2 and GABAB receptor stimulation and by alterations in calcium concentrations. The Michaelis-Menten maximal velocity (Vmax) measure, an approximation for DAT levels, predicts maximal downward velocity in slices and in vivo. Dopamine peak height and upward velocity were similar between wild-type and DAT knock-out (DATKO) mice. In contrast, downward velocity was lower and exponential decay (tau) was higher in DATKO mice, supporting the use of both measures for extreme changes in DAT activity. In slices, the competitive DAT inhibitors cocaine, PTT, and WF23 increased peak height and upward velocity differentially across increasing concentrations, with PTT and cocaine reducing these measures at high concentrations. Downward velocity and tau values decreased and increased respectively across concentrations, with greater potency and efficacy observed with WF23 and PTT. In vivo recordings demonstrated similar effects of WF23, PTT, and cocaine on measures of release and clearance. Tau was a more sensitive measure at low concentrations, supporting its use as a surrogate for the Michaelis-Menten measure of apparent affinity (Km). Together, these results inform on the use of these various measures for dopamine release and clearance.


Subject(s)
Cocaine , Dopamine , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Dopamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Mice , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...