Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 5(5): 495-507, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28944233

ABSTRACT

BACKGROUND: Syntaxin-binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype-phenotype correlations. METHODS: We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). RESULTS: Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype-phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early-onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. CONCLUSION: Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.

2.
Hum Mol Genet ; 26(3): 519-526, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28053047

ABSTRACT

Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function.


Subject(s)
Autistic Disorder/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Autistic Disorder/pathology , Developmental Disabilities/physiopathology , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/pathology , Male , Mutation , Mutation, Missense , Pedigree , Phenotype , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Structure-Activity Relationship , Dyrk Kinases
3.
Acta Crystallogr D Struct Biol ; 72(Pt 10): 1110-1118, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27710932

ABSTRACT

Many crystal structures in the Protein Data Bank contain zinc ions in a geometrically distorted tetrahedral complex with four Cys and/or His ligands. A method is presented to automatically validate and correct these zinc complexes. Analysis of the corrected zinc complexes shows that the average Zn-Cys distances and Cys-Zn-Cys angles are a function of the number of cysteines and histidines involved. The observed trends can be used to develop more context-sensitive targets for model validation and refinement.


Subject(s)
Cysteine/chemistry , Histidine/chemistry , Proteins/chemistry , Zinc/chemistry , Binding Sites , Coordination Complexes/chemistry , Crystallography, X-Ray , Databases, Protein , Ligands , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL