Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058390

ABSTRACT

BACKGROUND: Archaeobotanists and palaeoecologists extensively use geometric morphometrics to identify plant opal phytoliths. Particularly when applied to assemblages of phytoliths from concentrations retrieved from closed contexts, morphometric data from archaeological phytoliths compared with similar data from reference material may allow taxonomic attribution. Observer variation is one aspect of phytolith morphometry that has received little attention but may be an important source of error, and hence cause of potential misidentification of plant remains. SCOPE: To investigate inter- and intra-observer variation in phytolith morphometry, eight researchers (observers) from different laboratories measured 50 samples each from three phytolith morphotypes, Bilobate, Bulliform flabellate and Elongate dendritic, three times, under the auspices of the International Committee for Phytolith Morphometrics (ICPM). METHODS: Data for 17 size and shape variables were collected for each phytolith by manually digitising a phytolith outline (mask) from a photograph, followed by measurement of the mask with open-source morphometric software. KEY RESULTS: Inter-observer variation ranged from 0 to 23% difference from the mean of all observers. Intra-observer variation ranged from 0 to 9% difference from the mean of individual observers per week. Inter- and intra-observer variation was generally higher among inexperienced researchers. CONCLUSIONS: Scaling errors were a major cause of variation and occurred more with less experienced researchers, which is likely related to familiarity with data collection. The results indicate that inter- and intra-observer variation can be substantially reduced by providing clear instructions for and training with the equipment, photo capturing, software, data collection and data cleaning. In this paper, the ICPM provides recommendations to minimise variation.Advances in automatic data collection may eventually reduce inter- and intra-observer variation, but until this is common practice, the ICPM recommends that phytolith morphometric analyses adhere to standardised guidelines to assure that measured phytolith variables are accurate, consistent and comparable between different researchers and laboratories.

2.
PLoS One ; 13(4): e0194315, 2018.
Article in English | MEDLINE | ID: mdl-29617400

ABSTRACT

Historical reconstructions of plant community distributions are useful for biogeographic studies and restoration planning, but the quality of insights gained depends on the depth and reliability of historical information available. For the Central Valley of California, one of the most altered terrestrial ecosystems on the planet, this task is particularly difficult given poor historical documentation and sparse relict assemblages of pre-invasion plant species. Coastal and interior prairies were long assumed to have been dominated by perennial bunchgrasses, but this hypothesis has recently been challenged. We evaluated this hypothesis by creating species distribution models (SDMs) using a novel approach based on the abundance of soil phytoliths (microscopic particles of biogenic silica used as a proxy for long-term grass presence) extracted from soil samples at locations statewide. Modeled historical grass abundance was consistently high along the coast and to a lesser extent in higher elevation foothills surrounding the Central Valley. SDMs found strong associations with mean temperature, temperature variability, and precipitation variability, with higher predicted abundance in regions with cooler, equable temperatures and moderated rainfall, mirroring the pattern for modern perennial grass distribution across the state. The results of this study strongly suggest that the pre-Columbian Central Valley of California was not dominated by grasses. Using soil phytolith data as input for SDMs is a promising new method for predicting the extent of prehistoric grass distributions where alternative historical datasets are lacking.


Subject(s)
Conservation of Natural Resources , Ecosystem , Grassland , California , Ecology , Introduced Species , Poaceae , Soil
SELECTION OF CITATIONS
SEARCH DETAIL