Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 4(11): eaau0059, 2018 11.
Article in English | MEDLINE | ID: mdl-30430134

ABSTRACT

We propose a novel mechanism of flat band formation based on the relative biasing of only one sublattice against other sublattices in a honeycomb lattice bilayer. The mechanism allows modification of the band dispersion from parabolic to "Mexican hat"-like through the formation of a flattened band. The mechanism is well applicable for bilayer graphene-both doped and undoped. By angle-resolved photoemission from bilayer graphene on SiC, we demonstrate the possibility of realizing this extremely flattened band (< 2-meV dispersion), which extends two-dimensionally in a k-space area around the K ¯ point and results in a disk-like constant energy cut. We argue that our two-dimensional flat band model and the experimental results have the potential to contribute to achieving superconductivity of graphene- or graphite-based systems at elevated temperatures.

2.
Sci Rep ; 5: 18273, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26678565

ABSTRACT

In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

3.
Phys Rev Lett ; 105(6): 067002, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20867999

ABSTRACT

We have studied the electronic structure of the nonmagnetic LiFeAs (T(c)∼18 K) superconductor using angle-resolved photoemission spectroscopy. We find a notable absence of the Fermi surface nesting, strong renormalization of the conduction bands by a factor of 3, high density of states at the Fermi level caused by a van Hove singularity, and no evidence for either a static or a fluctuating order except superconductivity with in-plane isotropic energy gaps. Our observations suggest that these electronic properties capture the majority of ingredients necessary for the superconductivity in iron pnictides.

4.
Phys Rev Lett ; 104(18): 187001, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482200

ABSTRACT

We report superconducting (SC) properties of stoichiometric LiFeAs (T(c)=17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rocking curves indicate better ordering than in chemically doped 122 compounds. The London penetration depth lambda(ab)(0)=210+/-20 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. The temperature dependence of lambda(ab) is best described by a single isotropic SC gap Delta(0)=3.0+/-0.2 meV, which agrees with the ARPES value of Delta(0)(ARPES)=3.1+/-0.3 meV and corresponds to the ratio 2Delta/k(B)T(c)=4.1+/-0.3, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor.

5.
Phys Rev Lett ; 105(14): 147201, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-21230862

ABSTRACT

The single-layered half-doped manganite La(0.5)Sr(1.5)MnO4 (LSMO), was studied by means of the angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and resistivity measurements. STM revealed a smooth reconstruction-free surface; the density of states, extracted from photoemission and tunneling spectroscopy, is in agreement with transport measurements. The derived from ARPES Fermi surface (FS) nesting properties correspond to the known pattern of the charge-orbital ordering (COO), which implies that FS instability is related to the propensity to form a COO state in LSMO.

6.
Phys Rev Lett ; 102(16): 167001, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518744

ABSTRACT

We investigate the low energy electronic structure of Ba1-xKxFe2As2 (x=0; 0.3, T_{c}=32 K) single crystals by angle-resolved photoemission spectroscopy with a focus on the renormalization of the dispersion. A kink feature is detected at E approximately 25 meV for the doped compound which vanishes at T=200 K but stays virtually constant when T_{c} is crossed. Our experimental findings rule out the magnetic resonance mode as the origin of the kink and render conventional electron-phonon coupling unlikely. They put stringent restrictions on the dominant source of the electronic interaction channel.

7.
Phys Rev Lett ; 102(18): 187005, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19518904

ABSTRACT

We investigate the magnetic penetration depth lambda in superconducting Ba1-xKxFe2As2 (Tc approximately 32 K) with muon-spin rotation (microSR) and angle-resolved photoemission (ARPES). Using microSR, we find the penetration-depth anisotropy gamma lambda=lambda c/lambda ab and the second-critical-field anisotropy gammaHc2 to show an opposite T evolution below Tc. This dichotomy resembles the situation in the two-gap superconductor MgB2. A two-gap scenario is also suggested by an inflection point in the in-plane penetration depth lambda ab around 7 K. The complementarity of microSR and ARPES allows us to pinpoint the values of the two gaps and to arrive to a remarkable agreement between the two techniques concerning the full T evolution of lambdaab. This provides further support for the described scenario and establishes ARPES as a tool to assess macroscopic properties of the superconducting condensate.

8.
Phys Rev Lett ; 102(4): 046401, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257445

ABSTRACT

Measurements of the low-energy electronic structure in Gd2PdSi3 and Tb2PdSi3 by means of angle-resolved photoelectron spectroscopy reveal a Fermi surface consisting of an electron barrel at the Gamma point surrounded by spindle-shaped electron pockets originating from the same band. The calculated momentum-dependent RKKY coupling strength is peaked at the 1/2GammaK wave vector, which coincides with the propagation vector of the low-temperature in-plane magnetic order observed by neutron diffraction, thereby demonstrating the decisive role of the Fermi surface geometry in explaining the complex magnetic ground state of ternary rare earth silicides.

9.
Nature ; 457(7229): 569-72, 2009 Jan 29.
Article in English | MEDLINE | ID: mdl-19177126

ABSTRACT

The distribution of valence electrons in metals usually follows the symmetry of the underlying ionic lattice. Modulations of this distribution often occur when those electrons are not stable with respect to a new electronic order, such as spin or charge density waves. Electron density waves have been observed in many families of superconductors, and are often considered to be essential for superconductivity to exist. Recent measurements seem to show that the properties of the iron pnictides are in good agreement with band structure calculations that do not include additional ordering, implying no relation between density waves and superconductivity in these materials. Here we report that the electronic structure of Ba(1-x)K(x)Fe(2)As(2) is in sharp disagreement with those band structure calculations, and instead reveals a reconstruction characterized by a (pi, pi) wavevector. This electronic order coexists with superconductivity and persists up to room temperature (300 K).

10.
Phys Rev Lett ; 100(23): 236402, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18643525

ABSTRACT

We present a calculation of the Hall coefficient in 2H-TaSe(2) and 2H-Cu(0.2)NbS(2) based on their electronic structure extracted from angle-resolved photoemission spectra. The well-known semiclassical approach, based on the solution of the Boltzmann equation, yields the correct value for the normal-state Hall coefficient. Entering the charge density wave state results in the opening of the pseudogap and redistribution of the spectral weight. Accounting for this allows us to reproduce the temperature dependence of the Hall coefficient, including the prominent sign change, with no adjustable parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...