Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 483: 13-21, 2022 03.
Article in English | MEDLINE | ID: mdl-34971598

ABSTRACT

Asymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C. elegans, and D. pachys one-cell embryos also divide asymmetrically. However how polarity is triggered in the absence of sperm remains unknown. In post-meiotic embryos, we find that the nucleus inhabits principally one embryo hemisphere, the future posterior pole. When forced to one pole by centrifugation, the nucleus returns to its preferred pole, although poles appear identical as concerns cortical ruffling and actin cytoskeleton. The location of the meiotic spindle also correlates with the future posterior pole and slight actin enrichment is observed at that pole in some early embryos along with microtubule structures emanating from the meiotic spindle. Polarized location of the nucleus is not observed in pre-meiotic D. pachys oocytes. All together our results are consistent with the idea that polarity of the D. pachys embryo is attained during meiosis, seemingly based on the location of the meiotic spindle, by a mechanism that may be present but suppressed in C. elegans.


Subject(s)
Asymmetric Cell Division/physiology , Meiosis/physiology , Oocytes/cytology , Oocytes/physiology , Parthenogenesis/physiology , Rhabditoidea/cytology , Rhabditoidea/embryology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Cell Nucleus/physiology , Female , Microtubules/physiology , Oviparity/physiology , Spindle Apparatus/physiology
2.
Obes Res Clin Pract ; 11(5): 534-543, 2017.
Article in English | MEDLINE | ID: mdl-28228348

ABSTRACT

BACKGROUND: The dangerous health risks associated with obesity makes it a very serious public health issue. Numerous studies verified a correlation between the increase in obesity and the parallel increase in soft drink consumption among world populations. The effects of one main component in soft drinks namely the carbon dioxide gas has not been studied thoroughly in any previous research. METHODS: Male rats were subjected to different categories of drinks and evaluated for over a year. Stomach ex vivo experiments were undertaken to evaluate the amount of ghrelin upon different beverage treatments. Moreover, 20 male students were tested for their ghrelin levels after ingestion of different beverages. RESULTS: Here, we show that rats consuming gaseous beverages over a period of around 1 year gain weight at a faster rate than controls on regular degassed carbonated beverage or tap water. This is due to elevated levels of the hunger hormone ghrelin and thus greater food intake in rats drinking carbonated drinks compared to control rats. Moreover, an increase in liver lipid accumulation of rats treated with gaseous drinks is shown opposed to control rats treated with degassed beverage or tap water. In a parallel study, the levels of ghrelin hormone were increased in 20 healthy human males upon drinking carbonated beverages compared to controls. CONCLUSIONS: These results implicate a major role for carbon dioxide gas in soft drinks in inducing weight gain and the onset of obesity via ghrelin release and stimulation of the hunger response in male mammals.


Subject(s)
Carbon Dioxide/adverse effects , Carbonated Beverages , Ghrelin/blood , Obesity/diagnosis , Adolescent , Adult , Animals , Body Mass Index , Carbon Dioxide/administration & dosage , Case-Control Studies , Humans , Hunger , Male , Obesity/etiology , Rats , Rats, Sprague-Dawley , Weight Gain , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...