Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
2.
Br J Cancer ; 130(11): 1841-1854, 2024 May.
Article in English | MEDLINE | ID: mdl-38553589

ABSTRACT

BACKGROUND: Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS: A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS: We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION: We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.


Subject(s)
N-Myc Proto-Oncogene Protein , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/classification , Neuroblastoma/pathology , Neuroblastoma/mortality , N-Myc Proto-Oncogene Protein/genetics , Prognosis , Aurora Kinase A/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Gene Amplification
3.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38310333

ABSTRACT

MOTIVATION: Protein language models (PLMs), which borrowed ideas for modelling and inference from natural language processing, have demonstrated the ability to extract meaningful representations in an unsupervised way. This led to significant performance improvement in several downstream tasks. Clustering amino acids based on their physical-chemical properties to achieve reduced alphabets has been of interest in past research, but their application to PLMs or folding models is unexplored. RESULTS: Here, we investigate the efficacy of PLMs trained on reduced amino acid alphabets in capturing evolutionary information, and we explore how the loss of protein sequence information impacts learned representations and downstream task performance. Our empirical work shows that PLMs trained on the full alphabet and a large number of sequences capture fine details that are lost in alphabet reduction methods. We further show the ability of a structure prediction model(ESMFold) to fold CASP14 protein sequences translated using a reduced alphabet. For 10 proteins out of the 50 targets, reduced alphabets improve structural predictions with LDDT-Cα differences of up to 19%. AVAILABILITY AND IMPLEMENTATION: Trained models and code are available at github.com/Ieremie/reduced-alph-PLM.


Subject(s)
Protein Folding , Proteins , Proteins/chemistry , Amino Acids/chemistry , Amino Acid Sequence , Amines
4.
Genes Dis ; 11(3): 101065, 2024 May.
Article in English | MEDLINE | ID: mdl-38222900

ABSTRACT

The factors that determine fibrosis progression or normal tissue repair are largely unknown. We previously demonstrated that autophagy inhibition-mediated epithelial-mesenchymal transition (EMT) in human alveolar epithelial type II (ATII) cells augments local myofibroblast differentiation in pulmonary fibrosis by paracrine signalling. Here, we report that liver kinase B1 (LKB1) inactivation in ATII cells inhibits autophagy and induces EMT as a consequence. In IPF lungs, this is caused by downregulation of CAB39L, a key subunit within the LKB1 complex. 3D co-cultures of ATII cells and MRC5 lung fibroblasts coupled with RNA sequencing (RNA-seq) confirmed that paracrine signalling between LKB1-depleted ATII cells and fibroblasts augmented myofibroblast differentiation. Together these data suggest that reduced autophagy caused by LKB1 inhibition can induce EMT in ATII cells and contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.

5.
BMC Complement Med Ther ; 23(1): 408, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957642

ABSTRACT

BACKGROUND: Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS: The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS: A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION: This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.


Subject(s)
Neoplasms , Plumbaginaceae , Humans , Apigenin , Molecular Docking Simulation , Network Pharmacology , Research Design
6.
BMC Infect Dis ; 23(1): 632, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759271

ABSTRACT

BACKGROUND: Influenza is a common illness for its high rates of morbidity and transmission. The implementation of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic to manage its dissemination could affect the transmission of influenza. METHODS: A retrospective analysis, between 2018 and 2023, was conducted to examine the incidence of influenza virus types A and B among patients in sentinel cities located in North or South China as well as in Wuhan City. For validations, data on the total count of influenza patients from 2018 to 2023 were collected at the Central Hospital of Wuhan, which is not included in the sentinel hospital network. Time series methods were utilized to examine seasonal patterns and to forecast future influenza trends. RESULTS: Northern and southern cities in China had earlier outbreaks during the NPIs period by about 8 weeks compared to the 2018-2019. The implementation of NPIs significantly reduced the influenza-like illness (ILI) rate and infection durations. Influenza B Victoria and H3N2 were the first circulating strains detected after the relaxation of NPIs, followed by H1N1 across mainland China. The SARIMA model predicted synchronized H1N1 outbreak cycles in North and South China, with H3N2 expected to occur in the summer in southern cities and in the winter in northern cities over the next 3 years. The ILI burden is expected to rise in both North and South China over the next 3 years, with higher ILI% levels in southern cities throughout the year, especially in winter, and in northern cities mainly during winter. In Wuhan City and the Central Hospital of Wuhan, influenza levels are projected to peak in the winter of 2024, with 2 smaller peaks expected during the summer of 2023. CONCLUSIONS: In this study, we report the impact of NPIs on future influenza trends in mainland China. We recommend that local governments encourage vaccination during the transition period between summer and winter to mitigate economic losses and mortality associated with influenza.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Influenza A Virus, H3N2 Subtype , Pandemics/prevention & control , Retrospective Studies , China/epidemiology
7.
Genes Dis ; 10(6): 2511-2527, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37533462

ABSTRACT

Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.

8.
F1000Res ; 12: 719, 2023.
Article in English | MEDLINE | ID: mdl-38903860

ABSTRACT

Background: Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) can access the nervous system and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. Methods: Here, we perform extensive data mining, integration and re-analysis of ZIKV infection datasets to highlight molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We collate infection data of multiple neuroblastoma cell lines by different ZIKV strains from a body of published literature to inform the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating published transcriptomics, interaction proteomics, dependency factor and compound datasets we propose the involvement of multiple host systems during ZIKV infection. Results: Through data mining of published literature, we observed most paediatric neuroblastoma cell lines to be highly susceptible to ZIKV infection and propose the PRVABC59 ZIKV strain to be the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV infection is dependent on sterol regulatory element binding protein (SREBP)-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV non-structural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. Conclusions: Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials.


Subject(s)
Neuroblastoma , Oncolytic Virotherapy , Proteomics , Zika Virus , Humans , Neuroblastoma/therapy , Neuroblastoma/metabolism , Neuroblastoma/virology , Oncolytic Virotherapy/methods , Zika Virus/physiology , Proteomics/methods , Cell Line, Tumor , Zika Virus Infection/therapy , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Transcriptome
9.
Front Plant Sci ; 13: 994036, 2022.
Article in English | MEDLINE | ID: mdl-36388517

ABSTRACT

Limonium Sinense (Girard) Kuntze is a traditional Chinese medicinal herb, showing blood replenishment, anti-tumour, anti-hepatitis, and immunomodulation activities amongst others. However, the mechanism of its pharmacological activities remains largely unknown. Here, we investigated the effects of bioactive ingredients from Limonium Sinense using an integrated approach. Water extracts from Limonium Sinense (LSW) showed a strong growth inhibitory effect on multiple cells in both 2D and 3D cultures. Global transcriptomic profiling and further connectivity map (CMap) analysis identified several similarly acting therapeutic candidates, including Tubulin inhibitors and hypoxia-inducible factor (HIF) modulators. The effect of LSW on the cell cycle was verified with flow cytometry showing a G2/M phase arrest. Integrated analysis suggested a role for gallic acid in mediating HIF activation. Taken together, this study provides novel insights into the bioactive ingredients in Limonium Sinense, highlighting the rich natural resource and therapeutic values of herbal plants.

10.
Elife ; 112022 02 21.
Article in English | MEDLINE | ID: mdl-35188460

ABSTRACT

Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFß increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.


Subject(s)
Collagen/physiology , Pulmonary Fibrosis/metabolism , Biomarkers , Cells, Cultured , Collagen/chemistry , Fibroblasts/metabolism , Gene Expression Regulation/physiology , Humans , Hypoxia-Inducible Factor 1 , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxidative Stress/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
11.
Bioinformatics ; 38(8): 2269-2277, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35176146

ABSTRACT

MOTIVATION: Protein-protein interactions (PPIs) play a key role in diverse biological processes but only a small subset of the interactions has been experimentally identified. Additionally, high-throughput experimental techniques that detect PPIs are known to suffer various limitations, such as exaggerated false positives and negatives rates. The semantic similarity derived from the Gene Ontology (GO) annotation is regarded as one of the most powerful indicators for protein interactions. However, while computational approaches for prediction of PPIs have gained popularity in recent years, most methods fail to capture the specificity of GO terms. RESULTS: We propose TransformerGO, a model that is capable of capturing the semantic similarity between GO sets dynamically using an attention mechanism. We generate dense graph embeddings for GO terms using an algorithmic framework for learning continuous representations of nodes in networks called node2vec. TransformerGO learns deep semantic relations between annotated terms and can distinguish between negative and positive interactions with high accuracy. TransformerGO outperforms classic semantic similarity measures on gold standard PPI datasets and state-of-the-art machine-learning-based approaches on large datasets from Saccharomyces cerevisiae and Homo sapiens. We show how the neural attention mechanism embedded in the transformer architecture detects relevant functional terms when predicting interactions. AVAILABILITY AND IMPLEMENTATION: https://github.com/Ieremie/TransformerGO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Machine Learning , Humans , Gene Ontology , Saccharomyces cerevisiae/genetics , Molecular Sequence Annotation , Computational Biology/methods
12.
Genes Dis ; 9(1): 41-50, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005106

ABSTRACT

Ubiquitin-specific protease (USP7), also known as Herpesvirus-associated ubiquitin-specific protease (HAUSP), is a deubiquitinase. There has been significant recent attention on USP7 following the discovery that USP7 is a key regulator of the p53-MDM2 pathway. The USP7 protein is 130 kDa in size and has multiple domains which bind to a diverse set of proteins. These interactions mediate key developmental and homeostatic processes including the cell cycle, immune response, and modulation of transcription factor and epigenetic regulator activity and localization. USP7 also promotes carcinogenesis through aberrant activation of the Wnt signalling pathway and stabilization of HIF-1α. These findings have shown that USP7 may induce tumour progression and be a therapeutic target. Together with interest in developing USP7 as a target, several studies have defined new protein interactions and the regulatory networks within which USP7 functions. In this review, we focus on the protein interactions of USP7 that are most important for its cancer-associated roles.

13.
PLoS One ; 16(11): e0246707, 2021.
Article in English | MEDLINE | ID: mdl-34739494

ABSTRACT

Glycogen-specific kinase (GSK3ß) is an integral regulator of the Wnt signalling pathway as well as many other diverse signalling pathways and processes. Dys-regulation of GSK3ß is implicated in many different pathologies, including neurodegenerative disorders as well as many different tumour types. In the context of tumour development, GSK3ß has been shown to play both oncogenic and tumour suppressor roles, depending upon tissue, signalling environment or disease progression. Although multiple substrates of the GSK3ß kinase have been identified, the wider protein networks within which GSK3ß participates are not well known, and the consequences of these interactions not well understood. In this study, LC-MS/MS expression analysis was performed using knockout GSK3ß colorectal cancer cells and isogenic controls in colorectal cancer cell lines carrying dominant stabilizing mutations of ß-catenin. Consistent with the role of GSK3ß, we found that ß-catenin levels and canonical Wnt activity are unaffected by knockout of GSK3ß and therefore used this knockout cell model to identify other processes in which GSK3ß is implicated. Quantitative proteomic analysis revealed perturbation of proteins involved in cell-cell adhesion, and we characterized the phenotype and altered proteomic profiles associated with this. We also characterized the perturbation of metabolic pathways resulting from GSK3ß knockout and identified defects in glycogen metabolism. In summary, using a precision colorectal cancer cell-line knockout model with constitutively activated ß-catenin we identified several of the diverse pathways and processes associated with GSK3ß function.


Subject(s)
Cell Adhesion/genetics , Colorectal Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/genetics , Metabolic Networks and Pathways/genetics , Wnt Signaling Pathway/physiology , Animals , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Proteomics
14.
J Biol Chem ; 297(3): 101096, 2021 09.
Article in English | MEDLINE | ID: mdl-34418430

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1-mediated epithelial-mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-ß-induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial-mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial-mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1-tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-ß-activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor-like repeats. Together, these data identify that aberrant bidirectional epithelial-mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Idiopathic Pulmonary Fibrosis/physiopathology , Cell Movement , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Female , Fibroblasts/metabolism , Fibrosis/physiopathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/pathology , Male , Primary Cell Culture , Pulmonary Fibrosis/metabolism , Tissue Plasminogen Activator/metabolism , Transforming Growth Factor beta/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
15.
Front Oncol ; 11: 654812, 2021.
Article in English | MEDLINE | ID: mdl-34136390

ABSTRACT

G protein-coupled receptor kinase 6 (GRK6) is expressed in various tissues and is involved in the development of several diseases including lung cancer. We previously reported that GRK6 is down-regulated in lung adenocarcinoma patients, which induces cell invasion and metastasis. However, further understanding of the role of GRK6 in lung adenocarcinoma is required. Here we explored the functional consequence of GRK6 inhibition in lung epithelial cells. Analysis of TCGA data was coupled with RNA sequencing (RNA-seq) in alveolar epithelial type II (ATII) cells following depletion of GRK6 with RNA interference (RNAi). Findings were validated in ATII cells followed by tissue microarray analysis. Pathway analysis suggested that one of the Hallmark pathways enriched upon GRK6 inhibition is 'Hallmark_Hypoxia' (FDR = 0.014). We demonstrated that GRK6 depletion induces HIF1α (hypoxia-inducible factor 1 alpha) levels and activity in ATII cells. The findings were further confirmed in lung adenocarcinoma samples, in which GRK6 expression levels negatively and positively correlate with HIF1α expression (P = 0.015) and VHL expression (P < 0.0001), respectively. Mechanistically, we showed the impact of GRK6 on HIF activity could be achieved via regulation of VHL levels. Taken together, targeting the HIF pathway may provide new strategies for therapy in GRK6-depleted lung adenocarcinoma patients.

16.
Lancet Respir Med ; 9(7): 747-754, 2021 07.
Article in English | MEDLINE | ID: mdl-33964245

ABSTRACT

BACKGROUND: The consequences of COVID-19 in those who recover from acute infection requiring hospitalisation have yet to be clearly defined. We aimed to describe the temporal trends in respiratory outcomes over 12 months in patients hospitalised for severe COVID-19 and to investigate the associated risk factors. METHODS: In this prospective, longitudinal, cohort study, patients admitted to hospital for severe COVID-19 who did not require mechanical ventilation were prospectively followed up at 3 months, 6 months, 9 months, and 12 months after discharge from Renmin Hospital of Wuhan University, Wuhan, China. Patients with a history of hypertension; diabetes; cardiovascular disease; cancer; and chronic lung disease, including asthma or chronic obstructive pulmonary disease; or a history of smoking documented at time of hospital admission were excluded at time of electronic case-note review. Patients who required intubation and mechanical ventilation were excluded given the potential for the consequences of mechanical ventilation itself to influence the factors under investigation. During the follow-up visits, patients were interviewed and underwent physical examination, routine blood test, pulmonary function tests (ie, diffusing capacity of the lungs for carbon monoxide [DLCO]; forced expiratory flow between 25% and 75% of forced vital capacity [FVC]; functional residual capacity; FVC; FEV1; residual volume; total lung capacity; and vital capacity), chest high-resolution CT (HRCT), and 6-min walk distance test, as well as assessment using a modified Medical Research Council dyspnoea scale (mMRC). FINDINGS: Between Feb 1, and March 31, 2020, of 135 eligible patients, 83 (61%) patients participated in this study. The median age of participants was 60 years (IQR 52-66). Temporal improvement in pulmonary physiology and exercise capacity was observed in most patients; however, persistent physiological and radiographic abnormalities remained in some patients with COVID-19 at 12 months after discharge. We found a significant reduction in DLCO over the study period, with a median of 77% of predicted (IQR 67-87) at 3 months, 76% of predicted (68-90) at 6 months, and 88% of predicted (78-101) at 12 months after discharge. At 12 months after discharge, radiological changes persisted in 20 (24%) patients. Multivariate logistic regression showed increasing odds of impaired DLCO associated with female sex (odds ratio 8·61 [95% CI 2·83-26·2; p=0·0002) and radiological abnormalities were associated with peak HRCT pneumonia scores during hospitalisation (1·36 [1·13-1·62]; p=0·0009). INTERPRETATION: In most patients who recovered from severe COVID-19, dyspnoea scores and exercise capacity improved over time; however, in a subgroup of patients at 12 months we found evidence of persistent physiological and radiographic change. A unified pathway for the respiratory follow-up of patients with COVID-19 is required. FUNDING: National Natural Science Foundation of China, UK Medical Research Council, and National Institute for Health Research Southampton Biomedical Research Centre. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Hospitalization , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Respiratory Function Tests , Time Factors
17.
Front Mol Biosci ; 8: 595712, 2021.
Article in English | MEDLINE | ID: mdl-33869273

ABSTRACT

Alveolar type II (ATII) epithelial cells function as stem cells, contributing to alveolar renewal, repair and cancer. Therefore, they are a highly relevant model for studying a number of lung diseases, including acute injury, fibrosis and cancer, in which signals transduced by RAS and transforming growth factor (TGF)-ß play critical roles. To identify downstream molecular events following RAS and/or TGF-ß activation, we performed proteomic analysis using a quantitative label-free approach (LC-HDMSE) to provide in-depth proteome coverage and estimates of protein concentration in absolute amounts. Data are available via ProteomeXchange with identifier PXD023720. We chose ATIIER:KRASV12 as an experimental cell line in which RAS is activated by adding 4-hydroxytamoxifen (4-OHT). Proteomic analysis of ATII cells treated with 4-OHT or TGF-ß demonstrated that RAS activation induces an epithelial-mesenchymal transition (EMT) signature. In contrast, under the same conditions, activation of TGF-ß signaling alone only induces a partial EMT. EMT is a dynamic and reversible biological process by which epithelial cells lose their cell polarity and down-regulate cadherin-mediated cell-cell adhesion to gain migratory properties, and is involved in embryonic development, wound healing, fibrosis and cancer metastasis. Thus, these results could help to focus research on the identification of processes that are potentially driving EMT-related human disease.

19.
Cell Death Dis ; 11(11): 1001, 2020 11 21.
Article in English | MEDLINE | ID: mdl-33221821

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks the oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, making it difficult to target therapeutically. Targeting synthetic lethality is an alternative approach for cancer treatment. TNBC shows frequent loss of phosphatase and tensin homologue (PTEN) expression, which is associated with poor prognosis and treatment response. To identify PTEN synthetic lethal interactions, TCGA analysis coupled with a whole-genome siRNA screen in isogenic PTEN-negative and -positive cells were performed. Among the candidate genes essential for the survival of PTEN-inactive TNBC cells, WDHD1 (WD repeat and high-mobility group box DNA-binding protein 1) expression was increased in the low vs. high PTEN TNBC samples. It was also the top hit in the siRNA screen and its knockdown significantly inhibited cell viability in PTEN-negative cells, which was further validated in 2D and 3D cultures. Mechanistically, WDHD1 is important to mediate a high demand of protein translation in PTEN-inactive TNBC. Finally, the importance of WDHD1 in TNBC was confirmed in patient samples obtained from the TCGA and tissue microarrays with clinic-pathological information. Taken together, as an essential gene for the survival of PTEN-inactive TNBC cells, WDHD1 could be a potential biomarker or a therapeutic target for TNBC.


Subject(s)
DNA-Binding Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Middle Aged , PTEN Phosphohydrolase/biosynthesis , PTEN Phosphohydrolase/genetics , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...