Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Lab Invest ; 104(1): 100287, 2024 01.
Article in English | MEDLINE | ID: mdl-37949358

ABSTRACT

Cystinosis is an autosomal recessive disease caused by mutations in the CTNS gene encoding a protein called cystinosine, which is a lysosomal cystine transporter. Disease-causing mutations lead to accumulation of cystine crystals in the lysosomes, thereby causing dysfunction of vital organs. Determination of the increased leukocyte cystine level is one of the most used methods for diagnosis. However, this method is expensive, difficult to perform, and may yield different results in different laboratories. In this study, a disease model was created with CTNS gene-silenced HK2 cells, which can mimic cystinosis in cell culture, and multiomics methods (ie, proteomics, metabolomics, and fluxomics) were implemented at this cell culture to investigate new biomarkers for the diagnosis. CTNS-silenced cell line exhibited distinct metabolic profiles compared with the control cell line. Pathway analysis highlighted significant alterations in various metabolic pathways, including alanine, aspartate, and glutamate metabolism; glutathione metabolism; aminoacyl-tRNA biosynthesis; arginine and proline metabolism; beta-alanine metabolism; ascorbate and aldarate metabolism; and histidine metabolism upon CTNS silencing. Fluxomics analysis revealed increased cycle rates of Krebs cycle intermediates such as fumarate, malate, and citrate, accompanied by enhanced activation of inorganic phosphate and ATP production. Furthermore, proteomic analysis unveiled differential expression levels of key proteins involved in crucial cellular processes. Notably, peptidyl-prolyl cis-trans isomerase A, translation elongation factor 1-beta (EF-1beta), and 60S acidic ribosomal protein decreased in CTNS-silenced cells. Additionally, levels of P0 and tubulin α-1A chain were reduced, whereas levels of 40S ribosomal protein S8 and Midasin increased. Overall, our study, through the utilization of an in vitro cystinosis model and comprehensive multiomics approach, led to the way toward the identification of potential new biomarkers while offering valuable insights into the pathogenesis of cystinosis.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Humans , Cystinosis/genetics , Cystinosis/metabolism , Cystine/genetics , Cystine/metabolism , Proteomics , Biomarkers , Gene Silencing , RNA, Small Interfering/genetics , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism
2.
Nanoscale ; 16(1): 394-410, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38073471

ABSTRACT

This study aimed to investigate the effects of nanoparticles on macrophage polarization and their subsequent influence on post-tumorigenic behavior. Initially, seven different nanoparticles were applied to macrophages, and Zn-Ni-FeO (100 nm) and palladium nanoparticles (PdNPs, ∼25 nm) were found to induce M1-polarization in macrophages. A co-culture experiment was then conducted to examine the effects of macrophages on MCF-7 breast cancer micro-tissues. The M2-macrophages promoted tumor proliferation, while M1- and PdNPs-induced macrophages showed anti-tumor effects by suppressing cell proliferation. To reveal the mechanisms of effect, exosomes isolated from M1 (M1-Exo), M0 (M0-Exo), M2 (M2-Exo), and PdNPs-induced (PdNPs-Exo) macrophages were applied to the heterotypic tumor micro-tissues including MCF-7, human umbilical vein endothelial cells (HUVECs), and primary human dermal fibroblasts (phDFs). M2-Exo was seen to promote the migration of cancer cells and induce epithelial-mesenchymal transition (EMT), while M1-Exo suppressed these behaviors. PdNPs-Exo was effective in suppressing the aggressive nature of breast cancer cells similar to M1-Exo, moreover, the efficacy of 5-fluorouracil (5-FU) was increased in combination with PdNPs-Exo in both MCF-7 and heterotypic micro-tissues. In conclusion, PdNPs-Exo has potential anti-tumor effects, can be used as a combination therapy to enhance the efficacy of anti-cancer drugs, as well as innovative implants for breast cancer treatment.


Subject(s)
Breast Neoplasms , Exosomes , Metal Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Endothelial Cells/pathology , Palladium/pharmacology , Macrophages/pathology
3.
Acta Biomater ; 171: 223-238, 2023 11.
Article in English | MEDLINE | ID: mdl-37793600

ABSTRACT

Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.


Subject(s)
Hydrogels , Laminin , Animals , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Multiomics , Organoids , Peptides/pharmacology
4.
Arch Pharm (Weinheim) ; 356(12): e2300382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37768844

ABSTRACT

In recent years, drugs that contain boronic acid groups, such as ixazomib (Ninlaro™) and bortezomib (Velcade™), have been used in the treatment of bone marrow cancer. The activity of compounds has been found to increase with the addition of boron atoms to the structure. In addition to these compounds, studies have found that fingolimod (FTY720) is more effective against breast cancer than cisplatin. Therefore, in this study, the first examples of boron-containing derivatives of fingolimod were designed and synthesized; in addition, their structures were confirmed by spectroscopic techniques. The synthesized boron-containing drug candidates were found to significantly inhibit cell proliferation and induce apoptosis-mediated cell death in HT-29 (colorectal cells), SaOs-2 (osteosarcoma cells), and U87-MG (glioblastoma cells). Moreover, we revealed that the anticancer effects of boron-containing fingolimod compounds were found to be significantly enhanced over boron-free control groups and, strikingly, over the widely used anticancer drug 5-fluorouracil. The metabolomic analysis confirmed that administration of the boron-containing drug candidates induces significant changes in the metabolite profiles in HT-29, SaOs-2, and U87-MG cells. Altogether, our results showed that boron-containing fingolimod compounds can be further examined to reveal their potential as anticancer drug candidates.


Subject(s)
Antineoplastic Agents , Boronic Acids , Humans , Boronic Acids/pharmacology , Fingolimod Hydrochloride/pharmacology , Molecular Docking Simulation , Boron/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
5.
Adv Healthc Mater ; 12(20): e2203044, 2023 08.
Article in English | MEDLINE | ID: mdl-37014809

ABSTRACT

3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicine.


Subject(s)
Bioprinting , Tissue Engineering , Printing, Three-Dimensional , Extracellular Matrix/chemistry , Regenerative Medicine , Hydrogels/chemistry , Tissue Scaffolds/chemistry
6.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768921

ABSTRACT

Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.


Subject(s)
Amino Acid Transport Systems, Neutral , Cystinosis , Humans , Cystinosis/genetics , Cystine/metabolism , Creatinine , Biomarkers/metabolism , Glutathione/metabolism , Amino Acid Transport Systems, Neutral/genetics
7.
Eur J Pharmacol ; 946: 175619, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36828102

ABSTRACT

Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H2S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1ß and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2S to the mitochondria may be a new therapeutic approach in airway inflammation.


Subject(s)
Bronchial Hyperreactivity , Hydrogen Sulfide , Female , Animals , Mice , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Tumor Necrosis Factor-alpha/pharmacology , Bronchial Hyperreactivity/chemically induced , Lipopolysaccharides/adverse effects , Interleukin-6/adverse effects , Mitochondria , Bronchoalveolar Lavage Fluid , Inflammation/chemically induced
8.
Biomacromolecules ; 23(10): 4254-4267, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36136959

ABSTRACT

This work presents a polysaccharide and protein-based two-component hybrid hydrogel integrating the cell-adhesive gelatin-tyramine (G-Tyr) and nonadhesive hyaluronic acid-tyramine (HA-Tyr) through enzyme-mediated oxidative coupling reaction. The resulting HA-Tyr/G-Tyr hydrogel reflects the precise chemical and mechanical features of the cancer extracellular matrix and is able to tune cancer cell adhesion upon switching the component ratio. The cells form quasi-spheroids on HA-Tyr rich hydrogels, while they tend to form an invasive monolayer culture on G-Tyr rich hydrogels. The metastatic genotype of colorectal adenocarcinoma cells (HT-29) increases on G-Tyr rich hydrogels which is driven by the material's adhesive property, and additionally confirmed by the suppressed gene expressions of apoptosis and autophagy. On the other hand, HA-Tyr rich hydrogels lead the cells to necrotic death via oxidative stress in quasi-spheroids. This work demonstrates the ideality of HA-Tyr/G-Tyr to modulate cancer cell adhesion, which also has potential in preventing primary metastasis after onco-surgery, biomaterials-based cancer research, and drug testing.


Subject(s)
Hydrogels , Neoplasms , Adhesives , Biocompatible Materials , Gelatin , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Tyramine/chemistry
9.
Mol Omics ; 18(7): 591-615, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35723504

ABSTRACT

Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional low-throughput screening techniques remains a critical challenge in the field. In contrast, the use of increasingly sophisticated omics technologies to facilitate high-throughput screening of unbiased global understanding of cell-biomaterial interactions at gene, epigenetic, mRNA, protein, metabolite, and lipid levels holds great potential to predict the therapeutic outcome of biomaterials with specific properties. In this review, we highlight the potential use of omics technologies - namely transcriptomics, proteomics, metabolomics and lipidomics - in biomaterial design and deciphering of the fundamental cell behaviors (e.g., adhesion, migration, differentiation) in response to cell-biomaterial interactions. Moreover, the potential challenges and prospects of high-throughput analysis platforms are discussed rationally, providing an insight into the developing field and its use in biomaterials science.


Subject(s)
Biocompatible Materials , High-Throughput Screening Assays , Metabolomics/methods , Proteins , Proteomics/methods
10.
Eur J Mass Spectrom (Chichester) ; 28(1-2): 56-64, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35422172

ABSTRACT

Introduction: Breast cancer is the most common cancer in women and is the second most common cause of cancer related mortality. Metabolomics, the identification of small metabolites, is a technique for determining the amount of these metabolites. Objectives: This study aimed to identify markers for the early diagnosis of brain metastasis by metabolomic methods in breast cancer patients. Methods: A total of 88 breast cancer patients with distant metastases were included in the study. The patients were divided into two groups according to their metastasis status: patients with brain metastases and distant metastases without any brain metastases. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-qTOF-MS) and gas chromatography-mass spectrometry (GC-MS) analysis methods were used for metabolomic analyses. Results: 33 of them, 88 patients had brain metastasis, and 55 patients had distant metastases without brain metastasis. A total of 72 and 35 metabolites were identified by the GC-MS and LC-qTOF-MS analysis, respectively. 47 of them were found to be significantly different in patients with brain metastasis. The pathway analysis, performed with significantly altered metabolites, showed that aminoacyl tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, alanine, aspartate, and glutamate metabolism, arginine biosynthesis, glycine, serine, and threonine metabolism pathways significantly altered in patients with brain metastasis. Predictive accuracies for have identifying the brain metastasis were performed with receiver operating characteristic (ROC) analysis, and the model with fifteen metabolites has 96.9% accuracy. Conclusions: While these results should be supported by prospective studies, these data are promising for early detection of brain metastasis with markers in liquid biopsy samples.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Biomarkers/analysis , Brain Neoplasms/diagnosis , Breast Neoplasms/diagnosis , Early Detection of Cancer , Female , Humans , Liquid Biopsy , Metabolomics/methods , Prospective Studies
11.
Eur J Pharm Sci ; 174: 106197, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35489612

ABSTRACT

Swallowing oral solid dosage forms is challenging in patients with dysphagia who are at risk of aspiration or choking. The most common method to facilitate drug administration in dysphagia patients is to mix the powdered drug with a small amount of thickened water, however little is known about the effects of this method on in vivo bioavailability of drugs. This study aimed to evaluate the impact of thickened liquids on dissolution rate and bioavailability of levetiracetam as a model drug. Powdered commercial tablets of levetiracetam, carbamazepine, atenolol and cefixime were mixed with water thickened with two commercial thickeners, modified maize starch (MS) and xanthan gam (XG), at three thickness levels: nectar, honey and pudding in test groups, and mixed with only water in the control group. At the first stage, the effects of thickened water on in vitro drug release of 4 drugs (levetiracetam, carbamazepine, atenolol and cefixime) were tested by using dialysis membrane method. Addition of both thickeners significantly reduced the release of three drugs compared to the control group, except carbamazepine. Levetiracetam which had the highest solubility was chosen as the model drug for in vivo experiments. In the second stage, New Zealand albino female rabbits (n=24) were divided into two groups as: control group (water+drug, n=6) and test group (thickened water+drug, n=18). Powdered levetiracetam tablets were mixed with water thickened with XG (n=9, 1.2%, 2.4%, 3.6%) and MS (n=9, 4%, 6%, 8%) at three thickness levels and administered to the rabbits by intragastric gavage. Blood samples were collected at 9 time points following administration. After two-weeks of wash-out, test groups were crossed over and sample collection was repeated. Blood samples were analysed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). An in vitro-in vivo correlation (IVIVC) model was developed using in vitro drug dissolution (%) and in vivo plasma concentrations of levetiracetam for control group and test groups. The peak plasma concentration (Cmax) was lower and time to reach Cmax (tmax) was relatively higher in test groups compared to control group. The lowest Cmax was detected at the highest thickness level, however, the differences between groups were not statistically significant (p=0.117 and p=0.495 for Cmax and tmax, respectively). No significant difference in total amount of levetiracetam absorbed (AUC) was found between groups (p=0.215 and p=0.183 for AUCinfinity and AUClast, respectively). The comparisons according to the type of thickener also revealed that pharmacokinetic parameters did not significantly differ between groups, except for a significantly lower Cmax when drug was mixed with MS-thickened water at nectar consistency (1.2%) compared to drug mixed with XG (4%) at the same thickness level (p=0.038). A good correlation was observed between in vitro and in vivo data, which was characterized by higher r2 values as the concentration of the thickening agents was increased, but not for all thickness levels studied, indicating an inability of this in vitro model to fully predict the in vivo response. These results suggest that regardless of the thickness level, the administration of levetiracetam with two commercial thickening agents commonly used in dysphagia for safe swallowing, do not affect the pharmacokinetic efficiency and thus, the bioavailability of the drug.


Subject(s)
Deglutition Disorders , Animals , Atenolol , Biological Availability , Carbamazepine , Cefixime , Chromatography, Liquid , Diet , Food Additives/analysis , Food Additives/chemistry , Humans , Levetiracetam , Plant Nectar , Rabbits , Starch , Tablets , Tandem Mass Spectrometry , Viscosity , Water
12.
Adv Biol (Weinh) ; 6(6): e2101317, 2022 06.
Article in English | MEDLINE | ID: mdl-35347890

ABSTRACT

Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Neural Stem Cells , Animals , Cell Differentiation , Exosomes/chemistry , Humans , Nerve Regeneration , Rats
13.
Biomater Sci ; 9(24): 8270-8284, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34766605

ABSTRACT

Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration.


Subject(s)
Gelatin , Hydrogels , Biomimetics , Humans , Laminin , Peptides , Tissue Engineering
14.
Sci Rep ; 11(1): 18161, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34518586

ABSTRACT

Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.


Subject(s)
Energy Metabolism , Mitochondrial Dynamics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Cells, Cultured , Fluorescence , Humans , Metabolic Flux Analysis , Metabolomics , Mitochondrial Proteins/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/ultrastructure , Muscle, Skeletal/ultrastructure
15.
J Tissue Eng Regen Med ; 15(11): 948-963, 2021 11.
Article in English | MEDLINE | ID: mdl-34463042

ABSTRACT

Decellularization of extracellular matrices offers an alternative source of regenerative biomaterials that preserve biochemical structure and matrix components of native tissues. In this study, decellularized bovine spinal cord meninges (dSCM)-derived extracellular matrix hydrogel (MeninGEL) is fabricated by employing a protocol that involves physical, chemical, and enzymatic processing of spinal meninges tissue and preserves the biochemical structure of meninges. The success of decellularization is characterized by measuring the contents of residual DNA, glycosaminoglycans, and hydroxyproline, while a proteomics analysis is applied to reveal the composition of MeninGEL. Frequency and temperature sweep rheometry show that dSCM forms self-supporting hydrogel at physiological temperature. The MeninGEL possesses excellent cytocompatibility. Moreover, it is evidenced with immuno/histochemistry and gene expression studies that the hydrogel induces growth-factor free differentiation of human mesenchymal stem cells into neural-lineage cells. Furthermore, MeninGEL instructs human umbilical vein endothelial cells to form vascular branching. With its innate bioactivity and low batch-to-batch variation property, the MeninGEL has the potential to be an off-the-shelf product in nerve tissue regeneration and restoration.


Subject(s)
Cell Differentiation , Hydrogels/pharmacology , Meninges/metabolism , Neovascularization, Physiologic , Neurogenesis , Spinal Cord/metabolism , Tissue Engineering/methods , Animals , Cattle , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Collagen/pharmacology , DNA/metabolism , Drug Combinations , Extracellular Matrix , Glycosaminoglycans/metabolism , Humans , Hydroxyproline/metabolism , Kinetics , Laminin/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Neurogenesis/drug effects , Porosity , Proteoglycans/pharmacology , Proteomics , Rheology , Temperature , Wettability
16.
Respir Care ; 66(9): 1440-1445, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33824174

ABSTRACT

BACKGROUND: Aerosol therapy is commonly used by intensivists during invasive mechanical ventilation. More information is needed to optimize outcomes. The first aim of this study was to assess the deposition of salbutamol on components of a closed mechanical ventilation system, both in the presence and absence of biofilm generated by Acinetobacter baumannii. The second aim was to evaluate the deposition of salbutamol, using a single dose and a double dose, delivered via a jet nebulizer placed between the flexible tube and the heat and moisture exchanger. METHODS: A mechanical ventilator was connected to a standard system, and a jet nebulizer was placed between the heat and moisture exchanger and the flexible tube. Clinical isolates of A. baumanii were used to generate a biofilm layer on the endotracheal tube. Two amounts of salbutamol were delivered via the jet nebulizer. An analytical liquid chromatography tandem mass spectrometry method was developed to evaluate salbutamol deposition. RESULTS: The presence of a biofilm on the endotracheal tube had no impact on salbutamol deposition (P = .83). There was no difference in surface deposition of salbutamol on component parts of the closed system in a comparison of a single dose and a double dose delivered via a jet nebulizer. CONCLUSIONS: Our findings indicate that an A. baumannii biofilm had no impact on the extent of salbutamol deposition. Salbutamol deposition was comparatively low and could be delivered without removal of the heat and moisture exchanger.


Subject(s)
Albuterol , Bronchodilator Agents , Administration, Inhalation , Aerosols , Biofilms , Equipment Design , Humans , Nebulizers and Vaporizers
17.
Anal Chim Acta ; 1154: 338325, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33736808

ABSTRACT

New technologies permit determining metabolomic profiles of human diseases by fingerprinting metabolites levels. However, to fully understand metabolomic phenotypes, metabolite levels and turnover rates are necessary to know. Krebs cycle is the major hub of energy metabolism and cell signaling. Traditionally, 13C stable isotope labeled substrates were used to track the carbon turnover rates in Krebs cycle metabolites. In this study, for the first time we introduce H2[18O] based stable isotope marker that permit tracking oxygen exchange rates in separate segments of Krebs cycle. The chromatographic and non-chromatographic parameters were systematically tested on the effect of labeling ratio of Krebs cycle mediators to increase selectivity and sensitivity of the method. We have developed a rapid, precise, and robust GC-MS method for determining the percentage of 18O incorporation to Krebs cycle metabolites. The developed method was applied to track the cancer-induced shift in the Krebs cycle dynamics of Caco-2 cells as compared to the control FHC cells revealing Warburg effects in Caco-2 cells. We demonstrate that unique information could be obtained using this newly developed 18O-labeling analytical technology by following the oxygen exchange rates of Krebs cycle metabolites. Thus, 18O-labeling of Krebs cycle metabolites expands the arsenal of techniques for monitoring the dynamics of cellular metabolism. Moreover, the developed method will allow to apply the 18O-labeling technique to numerous other metabolic pathways where oxygen exchange with water takes place.


Subject(s)
Citric Acid Cycle , Metabolomics , Caco-2 Cells , Gas Chromatography-Mass Spectrometry , Humans , Isotope Labeling
18.
Nat Prod Res ; 35(24): 6147-6152, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33025828

ABSTRACT

Roemerine is a naturally occurring aporphine alkaloid. In this study, we screened a conformer library of Food and Drug Administration (FDA)-approved drugs to identify similar drugs that can assist in identifying the biological targets of roemerine. To assess the neuroactivity in vitro, we measured the levels of cell metabolites, Brain-Derived Neurotrophic Factor (BDNF) and serotonin (5-HT) in SH-SY5Y cell line. By means of structure-based virtual screening, we identified five drugs that are similar to roemerine; mirtazapine, atomoxetine, epinastine, diphenhydramine and orphenadrine. GC-MS metabolomics study revealed that roemerine has a high impact on alanine-aspartate-glutamate pathway in cell lysate and cultured medium. Additionally, roemerine increased intercellular 5-HT level and intracellular BDNF protein expression at 10 µM. In conclusion, roemerine - a major alkaloid in antidepressant-like effect possessing plants (P. lacerum and P. syriacum) - has a neuronal activity through increasing BDNF protein expression and affecting serotonergic and glutamatergic systems in SH-SY5Y cell line.


Subject(s)
Alkaloids , Aporphines , Alkaloids/pharmacology , Aporphines/pharmacology , Brain-Derived Neurotrophic Factor , Cell Line, Tumor , Humans , Plant Extracts , Serotonin
19.
AAPS PharmSciTech ; 21(8): 308, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33156405

ABSTRACT

L-Carnitine has attracted much more attention especially in the treatment of crucial diseases such as diabetes, regional slimming, and obesity because of its metabolic activities. However, because of its short half-life, low bioavailability, and inability to be stored in the body, frequent dosing is required. In this study, L-carnitine-loaded liposome (lipo-carnitine) and PLGA nanoparticle (nano-carnitine) formulations were prepared and characterized. For lipo-carnitine and nano-carnitine formulations, particle size values were 97.88 ± 2.96 nm and 250.90 ± 6.15 nm; polydispersity index values were 0.35 ± 0.01 and 0.22 ± 0.03; zeta potential values were 6.36 ± 0.54 mV and - 32.80 ± 2.26 mV; and encapsulation efficiency percentage values were 14.26 ± 3.52% and 21.93 ± 4.17%, respectively. Comparative in vitro release studies of novel formulations and solution of L-carnitine revealed that L-carnitine released 90% of its content at the end of 1st hour. On the other hand, lipo-carnitine and nano-carnitine formulations maintained a controlled-release profile for 12 h. The in vitro efficacy of the formulations on cardiac fibroblasts (CFs) was evaluated by metabolomic studies and pathway analysis. Besides the prolonged release, lipo-carnitine/nano-carnitine formulations were also found to be effective on amino acid, carbohydrate, and lipid metabolisms. As a result, innovative nano-formulations were successfully developed as an alternative to conventional preparations which are available on the market.


Subject(s)
Carnitine/administration & dosage , Drug Compounding , Liposomes , Metabolomics , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Biological Availability , Carnitine/pharmacokinetics , Nanoparticles/chemistry , Particle Size
20.
J Pharm Biomed Anal ; 190: 113509, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-32814263

ABSTRACT

Recently, metabolomics analyses have become increasingly common in the general scientific community as it is applied in several researches relating to diseases diagnosis. Identification and quantification of small molecules belonging to metabolism in biological systems have an important role in diagnosis of diseases. The combination of chromatography with mass spectrometry is used for the accurate and reproducible analysis of hundreds to thousands of metabolites in biological fluids or tissue samples. The number of metabolites that can be identified in biological fluids or tissue varies according to the gas (GC) or liquid (LC) chromatographic techniques used. The cover of these chromatographic techniques also differs from each other based on the metabolite group (polar, lipids, organic acid etc.). Consequently, some of the metabolites can only be analyzed using either GC or LC. However, more than one metabolite or metabolite group may be found altered in a particular disease. Thus, in order to find these alterations, metabolomics analyses that cover a wide range of metabolite groups are usually applied. In this regard, GC-MS and LC-MS techniques are mostly used together to identify completely all the altered metabolites during disease diagnosis. Using these combined techniques also allows identification of metabolite(s) with significantly altered phenotype. This review sheds light on metabolomics studies involving the simultaneous use of GC-MS and LC-MS. The review also discusses the coverage, sample preparation, data acquisition and data preprocessing for untargeted metabolomics studies. Moreover, the advantages and disadvantages of these methods were also evaluated. Finally, precautions and suggestions on how to perform metabolomics studies in an accurate, precise, complete and unbiased way were also outlined.


Subject(s)
Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Metabolomics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...