Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
AIMS Microbiol ; 9(1): 55-74, 2023.
Article in English | MEDLINE | ID: mdl-36891530

ABSTRACT

Microalgae biomasses are excellent sources of diverse bioactive compounds such as lipids, polysaccharides, carotenoids, vitamins, phenolics and phycobiliproteins. Large-scale production of these bioactive substances would require microalgae cultivation either in open-culture systems or closed-culture systems. Some of these bioactive compounds (such as polysaccharides, phycobiliproteins and lipids) are produced during their active growth phase. They appear to have antibacterial, antifungal, antiviral, antioxidative, anticancer, neuroprotective and chemo-preventive activities. These properties confer on microalgae the potential for use in the treatment and/or management of several neurologic and cell dysfunction-related disease conditions, including Alzheimer's disease (AD), AIDS and COVID-19, as shown in this review. Although several health benefits have been highlighted, there appears to be a consensus in the literature that the field of microalgae is still fledgling, and more research needs to be carried out to ascertain the mechanisms of action that underpin the effectiveness of microalgal compounds. In this review, two biosynthetic pathways were modeled to help elucidate the mode of action of the bioactive compounds from microalgae and their products. These are carotenoid and phycobilin proteins biosynthetic pathways. The education of the public on the importance of microalgae backed with empirical scientific evidence will go a long way to ensure that the benefits from research investigations are quickly rolled out. The potential application of these microalgae to some human disease conditions was highlighted.

2.
Arch Microbiol ; 204(9): 553, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960398

ABSTRACT

Energy crisis and environmental sustainability have attracted global attention to microalgal biofuels. The present study investigated the impact of organic carbon sources on growth and bio-oil accumulation by an oleaginous microalga Desmodesmus subspicatus LC172266 under mixotrophic culture condition. Glucose and glycerol supported higher growth rates and lipid productivities than sucrose, fructose, mannitol and acetate. Each of the organic carbon source tested supported significantly (P < 0.05) higher growth rates and lipid productivities than the photoautotrophic culture (without organic carbon source). The lipid productivity obtained with a mixture of optima concentrations of glucose and glycerol (5.0 gL-1 glycerol + 10.0 gL-1glucose) (0.14875 ± 0.002 g/L/day) was about 25% and 66% higher than the values obtained with only 10.0 gL-1glucose and 5.0 gL-1glycerol, respectively. When a batch culture with 5gL-1glycerol was fed with 0.5 gL-1glucose daily the cell growth and lipid productivity were lower than the values obtained in a batch culture with a mixture of glucose and glycerol. The lipid productivity obtained in a 4-L photobioreactor was 94% (0.217 gL-1 day-1), higher than the value obtained in a flask culture with 10.0 g/Lglucose (0.112 gL-1 day-1) and 46% higher than the value obtained in a flask culture with 5.0 gL-1glycerol (0.086 gL-1 day-1).


Subject(s)
Carbon , Microalgae , Biofuels , Biomass , Glucose , Glycerol , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL