Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nat Biotechnol ; 42(4): 587-590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37308687

ABSTRACT

We introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5-200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.


Subject(s)
Liposomes , Nanoparticles , Particle Size , Liposomes/chemistry , Nanoparticles/chemistry
2.
Handb Clin Neurol ; 193: 17-22, 2023.
Article in English | MEDLINE | ID: mdl-36803809

ABSTRACT

Prion diseases are fatal neurodegenerative disorders where the formation of amyloids is thought to be infectious by templating their conformation on to natively-folded counterparts. Postulated nearly four decades ago, the search for the mechanism behind the conformational templating has proceeded to no avail. Here, we extend the thermodynamic hypothesis of protein folding (Anfinsen's dogma) to the amyloid phenomenon and illustrate that the amyloid conformation (cross-ß) is one of two conformational states that are thermodynamically accessible to any protein sequence depending on concentration. A protein spontaneously assumes its native conformation below supersaturation and the amyloid cross-ß conformation above supersaturation. The information to adopt the native conformation and the amyloid conformation is present in the primary sequence and the backbone of the protein, respectively, and does not require templating. The rate-limiting step for proteins to adopt the cross-ß conformation of amyloid is termed nucleation, which can be catalyzed by surfaces (heterogeneous nucleation) or preformed amyloid fragments (seeding). Irrespective of the nucleation pathway, once triggered, amyloid formation proceeds spontaneously in fractal-like fashion, where the surfaces of the growing fibrils act as heterogeneous nucleation catalysts for new fibrils, a phenomenon known as secondary nucleation. This pattern is in contrast to the linear growth assumptions that the prion hypothesis necessitates for faithful prion strain replication. Additionally, the cross-ß conformation buries the majority of the protein side chain inside the fibrils, making the fibrils inert, generic, and extremely stable. As such, the source of toxicity in prion disorders may come to a greater extent from the loss of proteins in their normal, soluble, and therefore functional state rather than from their transformation into stable, insoluble, nonfunctioning amyloids.


Subject(s)
Prion Diseases , Prions , Humans , Prions/metabolism , Prion Diseases/metabolism , Amyloid/chemistry , Amyloid/metabolism , Protein Folding
3.
Handb Clin Neurol ; 193: 23-32, 2023.
Article in English | MEDLINE | ID: mdl-36803814

ABSTRACT

The toxic proteinopathy paradigm has defined neurodegenerative disorders for over a century. This gain-of-function (GOF) framework posited that proteins become toxic when turned into amyloids (pathology), predicting that lowering its levels would translate into clinical benefits. Genetic observations used to support a GOF framework are equally compatible with a loss-of-function (LOF) framework, as the soluble pool of proteins rendered unstable by these mutations (e.g., APP in Alzheimer's disease, SNCA in Parkinson's disease) aggregate, becoming depleted. In this review, we highlight misconceptions that have prevented LOF from gaining currency. Some of these misconceptions include no phenotype in knock-out animals (there is neurodegenerative phenotype in knock-out animals) and high levels of proteins in patients (patients have lower levels of the proteins involved in neurodegeneration than healthy age-matched controls). We also expose the internal contradictions within the GOF framework, namely that (1) pathology can have both pathogenic and protective roles; (2) the neuropathology gold standard for diagnosis can be present in normal individuals and absent in those affected; (3) oligomers are the toxic species even if they are ephemeral and decrease over time. We therefore advocate for a paradigm shift from proteinopathy (GOF) to proteinopenia (LOF) based on the universal depletion of soluble functional proteins in neurodegenerative diseases (low amyloid-ß 42 in Alzheimer's disease, low α-synuclein in Parkinson's disease, and low tau in progressive supranuclear palsy) and supported by the confluence of biologic, thermodynamic, and evolutionary principles with proteins having evolved to perform a function, not to become toxic, and where protein depletion is consequential. Such shift to a Proteinopenia paradigm is necessary to examining the safety and efficacy of protein replacement strategies instead of perpetuating a therapeutic paradigm with further antiprotein permutations.


Subject(s)
Alzheimer Disease , Parkinson Disease , Proteostasis Deficiencies , Supranuclear Palsy, Progressive , Animals , Humans , Parkinson Disease/pathology , Alzheimer Disease/pathology , Supranuclear Palsy, Progressive/metabolism
4.
J Alzheimers Dis ; 90(1): 333-348, 2022.
Article in English | MEDLINE | ID: mdl-36120786

ABSTRACT

BACKGROUND: In amyloid-positive individuals at risk for Alzheimer's disease (AD), high soluble 42-amino acid amyloid-ß (Aß42) levels are associated with normal cognition. It is unknown if this relationship applies longitudinally in a genetic cohort. OBJECTIVE: To test the hypothesis that high Aß42 preserves normal cognition in amyloid-positive individuals with Alzheimer's disease (AD)-causing mutations (APP, PSEN1, or PSEN2) to a greater extent than lower levels of brain amyloid, cerebrospinal fluid (CSF) phosphorylated tau (p-tau), or total tau (t-tau). METHODS: Cognitive progression was defined as any increase in Clinical Dementia Rating (CDR = 0, normal cognition; 0.5, very mild dementia; 1, mild dementia) over 3 years. Amyloid-positivity was defined as a standard uptake value ratio (SUVR) ≥1.42 by Pittsburgh compound-B positron emission tomography (PiB-PET). We used modified Poisson regression models to estimate relative risk (RR), adjusted for age at onset, sex, education, APOE4 status, and duration of follow-up. The results were confirmed with multiple sensitivity analyses, including Cox regression. RESULTS: Of 232 mutation carriers, 108 were PiB-PET-positive at baseline, with 43 (39.8%) meeting criteria for progression after 3.3±2.0 years. Soluble Aß42 levels were higher among CDR non-progressors than CDR progressors. Higher Aß42 predicted a lower risk of progression (adjusted RR, 0.36; 95% confidence interval [CI], 0.19-0.67; p = 0.002) better than lower SUVR (RR, 0.81; 95% CI, 0.68-0.96; p = 0.018). CSF Aß42 levels predicting lower risk of progression increased with higher SUVR levels. CONCLUSION: High CSF Aß42 levels predict normal cognition in amyloid-positive individuals with AD-causing genetic mutations.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Dementia , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Positron-Emission Tomography/methods , Dementia/genetics , Cognition , Mutation/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/cerebrospinal fluid
5.
Biology (Basel) ; 11(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35453734

ABSTRACT

Protein aggregation into amyloid fibrils affects many proteins in a variety of diseases, including neurodegenerative disorders, diabetes, and cancer. Physicochemically, amyloid formation is a phase transition process, where soluble proteins are transformed into solid fibrils with the characteristic cross-ß conformation responsible for their fibrillar morphology. This phase transition proceeds via an initial, rate-limiting nucleation step followed by rapid growth. Several well-defined nucleation pathways exist, including homogenous nucleation (HON), which proceeds spontaneously; heterogeneous nucleation (HEN), which is catalyzed by surfaces; and seeding via preformed nuclei. It has been hypothesized that amyloid aggregation represents a protein-only (nucleic-acid free) replication mechanism that involves transmission of structural information via conformational templating (the prion hypothesis). While the prion hypothesis still lacks mechanistic support, it is also incompatible with the fact that proteins can be induced to form amyloids in the absence of a proteinaceous species acting as a conformational template as in the case of HEN, which can be induced by lipid membranes (including viral envelopes) or polysaccharides. Additionally, while amyloids can be formed from any protein sequence and via different nucleation pathways, they invariably adopt the universal cross-ß conformation; suggesting that such conformational change is a spontaneous folding event that is thermodynamically favorable under the conditions of supersaturation and phase transition and not a templated replication process. Finally, as the high stability of amyloids renders them relatively inert, toxicity in some amyloid pathologies might be more dependent on the loss of function from protein sequestration in the amyloid state rather than direct toxicity from the amyloid plaques themselves.

7.
Parkinsonism Relat Disord ; 92: 15-21, 2021 11.
Article in English | MEDLINE | ID: mdl-34656902

ABSTRACT

INTRODUCTION: We sought to examine whether levels of soluble alpha-synuclein (α-syn), amyloid-beta (Aß42), phosphorylated tau (p-tau), and total tau (t-tau), as measured in cerebrospinal fluid (CSF), are associated with changes in brain volume in Parkinson's disease. METHODS: We assessed the 4-year change in total brain volume (n = 99) and baseline CSF α-syn, Aß42, p-tau, and t-tau of Parkinson Progression Markers Initiative participants. We used linear mixed models to assess the longitudinal effect of baseline CSF biomarkers on total and regional brain volume and thickness as well as linear regression for cross-sectional analyses at baseline and year 2. All models were adjusted for age and gender; brain volume models also adjusted for baseline intracranial volume. Bonferroni correction was applied. RESULTS: The 4-year change in total brain volume was -21.2 mm3 (95% confidence interval, -26.1, -16.3). There were no significant associations between the 4-year change in total brain volume and baseline levels of any CSF biomarker (all p-values > 0.05). On cross-sectional analyses, CSF Aß42 was linearly associated with total brain volume at baseline (R2 = 0.60, p = 0.0004) and at year 2 (R2 = 0.66, p < 0.0001), with CSF Aß42 < 1100 pg/ml, the threshold for brain amyloid pathology, associated with smaller total brain volume at baseline (p = 0.0010) and at year 2 (p = 0.0002). CSF α-syn was linearly associated with total brain volume at baseline (R2 = 0.58, p = 0.0044) but not at year 2 (R2 = 0.58, p = 0.1342). CONCLUSION: Reduction in soluble Aß42 is associated with lower total brain volume in Parkinson's disease.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Brain/pathology , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/pathology , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Linear Models , Longitudinal Studies , Male , Middle Aged , Organ Size , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
8.
EClinicalMedicine ; 38: 100988, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34505023

ABSTRACT

BACKGROUND: Brain amyloidosis does not invariably predict dementia. We hypothesized that high soluble 42-amino acid ß amyloid (Aß42) peptide levels are associated with normal cognition and hippocampal volume despite increasing brain amyloidosis. METHODS: This cross-sectional study of 598 amyloid-positive participants in the Alzheimer's Disease Neuroimaging Initiative cohort examined whether levels of soluble Aß42 are higher in amyloid-positive normal cognition (NC) individuals compared to mild cognitive impairment (MCI) and Alzheimer's disease (AD) and whether this relationship applies to neuropsychological assessments and hippocampal volume measured within the same year. All subjects were evaluated between June 2010 and February 2019. Brain amyloid positivity was defined as positron emission tomography-based standard uptake value ratio (SUVR) ≥1.08 for [18] F-florbetaben or 1.11 for [18]F-florbetapir, with higher SUVR indicating more brain amyloidosis. Analyses were adjusted for age, sex, education, APOE4, p-tau, t-tau, and centiloids levels. FINDINGS: Higher soluble Aß42 levels were observed in NC (864.00 pg/ml) than in MCI (768.60 pg/ml) or AD (617.46 pg/ml), with the relationship between NC, MCI, and AD maintained across all amyloid tertiles. In adjusted analysis, there was a larger absolute effect size of soluble Aß42 than SUVR for NC (0.82 vs. 0.40) and MCI (0.60 vs. 0.26) versus AD. Each standard deviation increase in Aß42 was associated with greater odds of NC than AD (adjusted odds ratio, 6.26; p < 0.001) or MCI (1.42; p = 0.006). Higher soluble Aß42 levels were also associated with better neuropsychological function and larger hippocampal volume. INTERPRETATION: Normal cognition and hippocampal volume are associated with preservation of high soluble Aß42 levels despite increasing brain amyloidosis. FUNDING: Please refer to the Funding section at the end of the article.

10.
Biomedicines ; 9(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34440250

ABSTRACT

Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties.

11.
J Alzheimers Dis ; 82(4): 1403-1415, 2021.
Article in English | MEDLINE | ID: mdl-34151810

ABSTRACT

Brain proteins function in their soluble, native conformation and cease to function when transformed into insoluble aggregates, also known as amyloids. Biophysically, the soluble-to-insoluble phase transformation represents a process of polymerization, similar to crystallization, dependent on such extrinsic factors as concentration, pH, and a nucleation surface. The resulting cross-ß conformation of the insoluble amyloid is markedly stable, making it an unlikely source of toxicity. The spread of brain amyloidosis can be fully explained by mechanisms of spontaneous or catalyzed polymerization and phase transformation instead of active replication, which is an enzyme- and energy-requiring process dependent on a specific nucleic acid code for the transfer of biological information with high fidelity. Early neuronal toxicity in Alzheimer's disease may therefore be mediated to a greater extent by a reduction in the pool of soluble, normal-functioning protein than its accumulation in the polymerized state. This alternative loss-of-function hypothesis of pathogenicity can be examined by assessing the clinical and neuroimaging effects of administering non-aggregating peptide analogs to replace soluble amyloid-ß levels above the threshold below which neuronal toxicity may occur. Correcting the depletion of soluble amyloid-ß, however, would only exemplify 'rescue medicine.' Precision medicine will necessitate identifying the pathogenic factors catalyzing the protein aggregation in each affected individual. Only then can we stratify patients for etiology-specific treatments and launch precision medicine for Alzheimer's disease and other neurodegenerative disorders.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid/metabolism , Amyloidosis/metabolism , Brain/pathology , Humans , Neurons/metabolism , Precision Medicine
12.
Front Aging Neurosci ; 12: 553635, 2020.
Article in English | MEDLINE | ID: mdl-33132895

ABSTRACT

Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.

13.
Front Neurosci ; 14: 256, 2020.
Article in English | MEDLINE | ID: mdl-32372895

ABSTRACT

Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes and Creutzfeldt-Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-ß conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-ß conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that the different nucleation pathways can serve as a mechanistic basis for an etiological classification of amyloidopathies, where hereditary forms generally follow the HON pathway, while sporadic forms follow seed-induced (prions) or surface-induced (including microbially induced) HEN pathways. Critically, the conformational and biophysical amyloid transformation results in loss-of-function (LOF) of the original natively folded and soluble protein. This LOF can, at least initially, be the mechanism of amyloid toxicity even before amyloid accumulation reaches toxic levels. By highlighting the important role of non-protein species in amyloid formation and LOF mechanisms of toxicity, we propose a generalized mechanistic framework that could help better understand the diverse etiology of amyloid diseases and offer new opportunities for therapeutic interventions, including replacement therapies.

14.
Nat Commun ; 10(1): 2331, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31133680

ABSTRACT

Artificial nanoparticles accumulate a protein corona layer in biological fluids, which significantly influences their bioactivity. As nanosized obligate intracellular parasites, viruses share many biophysical properties with artificial nanoparticles in extracellular environments and here we show that respiratory syncytial virus (RSV) and herpes simplex virus type 1 (HSV-1) accumulate a rich and distinctive protein corona in different biological fluids. Moreover, we show that corona pre-coating differentially affects viral infectivity and immune cell activation. In addition, we demonstrate that viruses bind amyloidogenic peptides in their corona and catalyze amyloid formation via surface-assisted heterogeneous nucleation. Importantly, we show that HSV-1 catalyzes the aggregation of the amyloid ß-peptide (Aß42), a major constituent of amyloid plaques in Alzheimer's disease, in vitro and in animal models. Our results highlight the viral protein corona as an acquired structural layer that is critical for viral-host interactions and illustrate a mechanistic convergence between viral and amyloid pathologies.


Subject(s)
Amyloid beta-Peptides/metabolism , Herpesvirus 1, Human/pathogenicity , Host-Pathogen Interactions/immunology , Peptide Fragments/metabolism , Protein Corona/immunology , Respiratory Syncytial Virus, Human/pathogenicity , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Alzheimer Disease/virology , Animals , Bronchoalveolar Lavage Fluid/virology , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Female , Healthy Volunteers , Herpes Simplex/blood , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpesvirus 1, Human/immunology , Humans , Male , Mice , Mice, Transgenic , Protein Aggregates/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Vero Cells
15.
Eur J Pharm Biopharm ; 132: 29-40, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30193928

ABSTRACT

Despite the advances in gene therapy and in oligonucleotide (ON) chemistry, efficient cellular delivery remains an obstacle. Most current transfection reagents suffer from low efficacy or high cytotoxicity. In this report, we describe the synergism between lipid and dendrimer delivery vectors to enhance the transfection efficiency, while avoiding high toxicity. We screened a library of 20 peptide dendrimers representing three different generations and evaluated their capability to deliver a single-stranded splice-switching ON after formulating with lipids (DOTMA/DOPE). The transfection efficiency was analyzed in 5 reporter cell lines, in serum-free and serum conditions, and with 5 different formulation protocols. All formulations displayed low cytotoxicity to the majority of the tested cell lines. The complex sizes were < 200 nm; particle size distributions of effective mixtures were < 80 nm; and, the zeta potential was dependent on the formulation buffer used. The best dendrimer enhanced transfection in a HeLa reporter cell line by 30-fold compared to untreated cells under serum-free conditions. Interestingly, addition of sucrose to the formulation enabled - for the first time - peptide dendrimers/lipid complexes to efficiently deliver splice-switching ON in the presence of serum, reaching 40-fold increase in splice switching. Finally, in vivo studies highlighted the potential of these formulae to change the biodistribution pattern to be more towards the liver (90% of injected dose) compared to the kidneys (5% of injected dose) or to unformulated ON. This success encourages further development of peptide dendrimer complexes active in serum and future investigation of mechanisms behind the influence of additives on transfection efficacy.


Subject(s)
Dendrimers/chemistry , Lipids/chemistry , Oligonucleotides/administration & dosage , Peptides/chemistry , Animals , Cell Line , Female , Gene Transfer Techniques , Genes, Reporter/genetics , Genetic Therapy/methods , Genetic Vectors/chemistry , HeLa Cells , Humans , Mice , Oligonucleotides/pharmacokinetics , Particle Size , Tissue Distribution , Transfection
16.
Sci Rep ; 7(1): 12635, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974718

ABSTRACT

Cell-penetrating peptides (CPPs) uptake mechanism is still in need of more clarification to have a better understanding of their action in the mediation of oligonucleotide transfection. In this study, the effect on early events (1 h treatment) in transfection by PepFect14 (PF14), with or without oligonucleotide cargo on gene expression, in HeLa cells, have been investigated. The RNA expression profile was characterized by RNA sequencing and confirmed by qPCR analysis. The gene regulations were then related to the biological processes by the study of signaling pathways that showed the induction of autophagy-related genes in early transfection. A ligand library interfering with the detected intracellular pathways showed concentration-dependent effects on the transfection efficiency of splice correction oligonucleotide complexed with PepFect14, proving that the autophagy process is induced upon the uptake of complexes. Finally, the autophagy induction and colocalization with autophagosomes have been confirmed by confocal microscopy and transmission electron microscopy. We conclude that autophagy, an inherent cellular response process, is triggered by the cellular uptake of CPP-based transfection system. This finding opens novel possibilities to use autophagy modifiers in future gene therapy.


Subject(s)
Autophagy/genetics , Cell-Penetrating Peptides/genetics , Lipopeptides/genetics , RNA, Small Interfering/genetics , Cell Membrane/genetics , Cell Membrane/ultrastructure , Genetic Therapy , HeLa Cells , Humans , Microscopy, Electron, Transmission , Oligonucleotides , Transfection
17.
Brain ; 140(4): 887-897, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28334866

ABSTRACT

A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/metabolism , Proteins/metabolism , rab1 GTP-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Biological Transport , C9orf72 Protein , COS Cells , Cell Line , Chlorocebus aethiops , DNA Repeat Expansion , Fibroblasts/drug effects , Fibroblasts/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Introns , Motor Neurons/drug effects , Motor Neurons/pathology , Neurons/drug effects , Neurons/pathology , Oligonucleotides, Antisense/pharmacology , Pedigree , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/pathology , Proteins/genetics , rab GTP-Binding Proteins , rab1 GTP-Binding Proteins/genetics
18.
Adv Drug Deliv Rev ; 106(Pt A): 172-182, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27349594

ABSTRACT

Nucleic acids and their synthetic oligonucleotide (ON) analogs are a group of gene therapeutic compounds which hold enormous clinical potential. Despite their undoubted potential, clinical translation of these molecules, however, has been largely held back by their limited bioavailability in the target tissues/cells. To overcome this, many different drug delivery systems have been devised. Among others, short delivery peptides, called cell-penetrating peptides (CPPs), have been demonstrated to allow for efficient delivery of nucleic acids and their ON analogs, in both cell culture and animal models. In this review, we provide brief overview of the latest advances in nucleic acid delivery with CPPs, covering the two main vectorization strategies, covalent conjugation and nanoparticle formation-based approach. In conclusion, CPP-based drug delivery systems have the capacity to overcome the hurdle of delivery and thus have the potential to facilitate the clinical translation of nucleic acid-based therapeutics.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , Drug Delivery Systems/methods , Nucleic Acids/administration & dosage , Animals , Humans , Nanoparticles/chemistry , Nucleic Acids/chemistry , Nucleic Acids/therapeutic use , Oligonucleotides/administration & dosage , Oligonucleotides/chemistry , Oligonucleotides/therapeutic use
19.
Methods Mol Biol ; 1364: 291-310, 2016.
Article in English | MEDLINE | ID: mdl-26472459

ABSTRACT

Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of "drug-likeness," physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.


Subject(s)
Drug Carriers/chemistry , RNA, Small Interfering/chemistry , Animals , Drug Carriers/chemical synthesis , Hydrophobic and Hydrophilic Interactions , RNA, Small Interfering/genetics
20.
Biochim Biophys Acta ; 1848(12): 3205-16, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409186

ABSTRACT

Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus - the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. "Naked" ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.


Subject(s)
Endocytosis , Nanostructures , Nucleic Acids/metabolism , Receptors, Scavenger/metabolism , Biological Transport , Cell Membrane/metabolism , Endosomes/metabolism , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...