Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077730

ABSTRACT

T cells are important players in the antitumor immune response. Over the past few years, the adoptive transfer of genetically modified, autologous T cells-specifically redirected toward the tumor by expressing either a T cell receptor (TCR) or a chimeric antigen receptor (CAR)-has been adopted for use in the clinic. At the moment, the therapeutic application of CD19- and, increasingly, BCMA-targeting-engineered CAR-T cells have been approved and have yielded partly impressive results in hematologic malignancies. However, employing transgenic T cells for the treatment of solid tumors remains more troublesome, and numerous hurdles within the highly immunosuppressive tumor microenvironment (TME) need to be overcome to achieve tumor control. In this review, we focused on the challenges that these therapies must face on three different levels: infiltrating the tumor, exerting efficient antitumor activity, and overcoming T cell exhaustion and dysfunction. We aimed to discuss different options to pave the way for potent transgenic T cell-mediated tumor rejection by engineering either the TME or the transgenic T cell itself, which responds to the environment.

2.
Cells ; 11(3)2022 01 25.
Article in English | MEDLINE | ID: mdl-35159220

ABSTRACT

Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.


Subject(s)
Multiple Myeloma , Animals , Animals, Genetically Modified , B-Cell Maturation Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
3.
J Immunother Cancer ; 9(9)2021 09.
Article in English | MEDLINE | ID: mdl-34518289

ABSTRACT

BACKGROUND: Neoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation. METHODS: Three neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient's immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient's TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing. RESULTS: Selected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation. CONCLUSIONS: We performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy/methods , Melanoma/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...