Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Genes (Basel) ; 14(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38002990

ABSTRACT

The 57B region of Drosophila melanogaster includes a cluster of the three homeobox genes orthopedia (otp), Drosophila Retinal homeobox (DRx), and homeobrain (hbn). In an attempt to isolate mutants for these genes, we performed an EMS mutagenesis and isolated lethal mutants from the 57B region, among them mutants for otp, DRx, and hbn. With the help of two newly generated deletions from the 57B region, we mapped additional mutants to specific chromosomal intervals and identified several of these mutants from the 57B region molecularly. In addition, we generated mutants for CG15651 and RIC-3 by gene targeting and mutants for the genes CG9344, CG15649, CG15650, and ND-B14.7 using the CRISPR/Cas9 system. We determined the lethality period during development for most isolated mutants. In total, we analysed alleles from nine different genes from the 57B region of Drosophila, which could now be used to further explore the functions of the corresponding genes in the future.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , DNA-Binding Proteins/genetics , Genes, Homeobox , ras Proteins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
Front Synaptic Neurosci ; 12: 560008, 2020.
Article in English | MEDLINE | ID: mdl-33633558

ABSTRACT

Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death. Here we investigated the role of GlyT2 at inhibitory glycinergic synapses in the mammalian auditory brainstem. These synapses are tuned for resilience, reliability, and precision, even during sustained high-frequency stimulation when endocytosis and refilling of SVs probably contribute substantially to efficient replenishment of the readily releasable pool (RRP). Such robust synapses are formed between MNTB and LSO neurons (medial nucleus of the trapezoid body, lateral superior olive). By means of patch-clamp recordings, we assessed the synaptic performance in controls, in GlyT2 knockout mice (KOs), and upon acute pharmacological GlyT2 blockade. Via computational modeling, we calculated the reoccupation rate of empty release sites and RRP replenishment kinetics during 60-s challenge and 60-s recovery periods. Control MNTB-LSO inputs maintained high fidelity neurotransmission at 50 Hz for 60 s and recovered very efficiently from synaptic depression. During 'marathon-experiments' (30,600 stimuli in 20 min), RRP replenishment accumulated to 1,260-fold. In contrast, KO inputs featured severe impairments. For example, the input number was reduced to ~1 (vs. ~4 in controls), implying massive functional degeneration of the MNTB-LSO microcircuit and a role of GlyT2 during synapse maturation. Surprisingly, neurotransmission did not collapse completely in KOs as inputs still replenished their small RRP 80-fold upon 50 Hz | 60 s challenge. However, they totally failed to do so for extended periods. Upon acute pharmacological GlyT2 inactivation, synaptic performance remained robust, in stark contrast to KOs. RRP replenishment was 865-fold in marathon-experiments, only ~1/3 lower than in controls. Collectively, our empirical and modeling results demonstrate that GlyT2 re-uptake activity is not the dominant factor in the SV recycling pathway that imparts indefatigability to MNTB-LSO synapses. We postulate that additional glycine sources, possibly the antiporter Asc-1, contribute to RRP replenishment at these high-fidelity brainstem synapses.

3.
Risk Anal ; 38(7): 1321-1331, 2018 07.
Article in English | MEDLINE | ID: mdl-29240986

ABSTRACT

Societies worldwide are investing considerable resources into the safe development and use of nanomaterials. Although each of these protective efforts is crucial for governing the risks of nanomaterials, they are insufficient in isolation. What is missing is a more integrative governance approach that goes beyond legislation. Development of this approach must be evidence based and involve key stakeholders to ensure acceptance by end users. The challenge is to develop a framework that coordinates the variety of actors involved in nanotechnology and civil society to facilitate consideration of the complex issues that occur in this rapidly evolving research and development area. Here, we propose three sets of essential elements required to generate an effective risk governance framework for nanomaterials. (1) Advanced tools to facilitate risk-based decision making, including an assessment of the needs of users regarding risk assessment, mitigation, and transfer. (2) An integrated model of predicted human behavior and decision making concerning nanomaterial risks. (3) Legal and other (nano-specific and general) regulatory requirements to ensure compliance and to stimulate proactive approaches to safety. The implementation of such an approach should facilitate and motivate good practice for the various stakeholders to allow the safe and sustainable future development of nanotechnology.

4.
Environ Sci Process Impacts ; 19(12): 1466-1473, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29205242

ABSTRACT

Regulatory hazard and risk assessments of chemical substances have to include all reliable and relevant data to be credible and complete. However, screening the literature for appropriate studies and extracting data is burdensome. Therefore, reducing impediments by making data easily and readily accessible to risk assessors could result in more comprehensive hazard and risk assessments. In this paper, we study WikiPharma, a database that aggregates ecotoxicity data for pharmaceuticals, extracted from peer-reviewed studies. The use of the WikiPharma database is explored to develop strategies on how similar tools can bridge between science and policy by providing risk assessors with easily accessible summary data. Specifically, adapting the concept of WikiPharma to industrial chemicals regulated under the REACH regulation is discussed. Experiences with WikiPharma show that there is interest in using peer-reviewed studies in regulatory decision-making. However, tools like WikiPharma require constant updates. Hence, as for "WikiREACH", effective incentives are needed to motivate researchers to feed in relevant data for regulatory assessments. Besides, support by automated processes can aid in the labour-intensive activity of gathering data. To ensure that such a tool is continuously maintained and compatible with the regulatory system, and thereby useful for hazard and risk assessments of chemicals, it would benefit from being developed in collaboration with the major stakeholders in the field, i.e. regulatory agencies, academia, industry, scientific journals, and providers of research network platforms.


Subject(s)
Databases, Factual , Drug-Related Side Effects and Adverse Reactions , Environmental Policy/legislation & jurisprudence , Environmental Pollutants , Research Design/legislation & jurisprudence , Decision Making , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , European Union , Government Regulation , Humans , Pharmaceutical Preparations/standards , Risk Assessment/legislation & jurisprudence
5.
Environ Sci Eur ; 28(1): 21, 2016.
Article in English | MEDLINE | ID: mdl-27752454

ABSTRACT

The purpose of the REACH Regulation is to ensure a high level of protection of human health and the environment as well as the free circulation of substances on the internal market while enhancing competitiveness and innovation. To this end, REACH introduces, among other instruments, the authorisation regime for substances of very high concern (SVHC) that are listed on Annex XIV of the regulation. After expiration of the transitional period for each Annex XIV-SVHC, articles, such as most products of daily use, produced in the European Economic Area (EEA) may not contain such substances unless an authorisation was granted for the specific use or this use falls within the scope of an exemption from the authorisation requirement. The authorisation scheme does, however, only apply to SVHC used in the EEA. As a consequence, REACH does not regulate SVHC entering the European market as part of imported articles which burden human health and the environment. Moreover, from an economic perspective, domestic articles are subject to stricter requirements than those which are produced abroad, putting actors from within the EEA at competitive disadvantage and thus impeding the intention of REACH to enhance competitiveness and innovation. One option to close this regulatory gap could be to extend the authorisation requirement to SVHC present in imported articles. A legal appraisal on behalf of the German Environment Agency (UBA) assesses whether such option would be in accordance with the specifications of WTO world trade law. It concludes that, measured by the standards of the WTO dispute settlement practice, such an extended authorisation scheme would neither violate the principles of national treatment and most-favoured nation treatment. Also, such regulation would not constitute an unnecessary obstacle to trade, since the extended authorisation requirement would pursue a legitimate objective covered by the regulatory autonomy of the EU and, furthermore, the regulation would not be more trade-restrictive than necessary. The contribution at hand summarises the main findings while taking into account first reactions to the legal appraisal.

6.
Cell Tissue Res ; 361(1): 177-213, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25896885

ABSTRACT

Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.


Subject(s)
Auditory Pathways/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL