Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (199)2023 09 22.
Article in English | MEDLINE | ID: mdl-37811942

ABSTRACT

Three-dimensional (3D) encapsulation of spheroids is crucial to adequately replicate the tumor microenvironment for optimal cell growth. Here, we designed an in vitro 3D glioblastoma model for spheroid encapsulation to mimic the tumor extracellular microenvironment. First, we formed square pyramidal microwell molds using polydimethylsiloxane. These microwell molds were then used to fabricate tumor spheroids with tightly controlled sizes from 50-500 µm. Once spheroids were formed, they were harvested and encapsulated in polyethylene glycol (PEG)-based hydrogels. PEG hydrogels are a versatile platform for spheroid encapsulation, as hydrogel properties such as stiffness, degradability, and cell adhesiveness can be tuned independently. Here, we used a representative soft (~8 kPa) hydrogel to encapsulate glioblastoma spheroids. Finally, a method to stain and image spheroids was developed to obtain high-quality images via confocal microscopy. Due to the dense spheroid core and relatively sparse periphery, imaging can be difficult, but using a clearing solution and confocal optical sectioning helps alleviate these imaging difficulties. In summary, we show a method to fabricate uniform spheroids, encapsulate them in PEG hydrogels and perform confocal microscopy on the encapsulated spheroids to study spheroid growth and various cell-matrix interactions.


Subject(s)
Glioblastoma , Spheroids, Cellular , Humans , Biocompatible Materials , Hydrogels , Polyethylene Glycols , Tumor Microenvironment
2.
Cell ; 178(1): 242-260.e29, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31155234

ABSTRACT

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Subject(s)
Myocardium/metabolism , Protein Biosynthesis , Adolescent , Adult , Aged , Animals , Codon/genetics , Female , Gene Expression Regulation , HEK293 Cells , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Middle Aged , Open Reading Frames/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Ribosomes/genetics , Ribosomes/metabolism , Young Adult
3.
Methods Mol Biol ; 1488: 217-237, 2017.
Article in English | MEDLINE | ID: mdl-27933526

ABSTRACT

Histone modifications are epigenetic marks that fundamentally impact the regulation of gene expression. Integrating histone modification information in the analysis of gene expression traits (eQTL mapping) has been shown to significantly enhance the prediction of eQTLs. In this chapter, we describe (1) how to perform quantitative trait locus (QTL) analysis using histone modification levels as traits and (2) how to integrate these data with information on RNA expression for the elucidation of the epigenetic control of transcript levels. We will provide a comprehensive introduction into the topic, describe in detail how ChIP-seq data are analyzed and elaborate on how to integrate ChIP-seq and RNA-seq data from a segregating disease animal model for the identification of the epigenetic control of RNA expression.


Subject(s)
Computational Biology/methods , Epigenesis, Genetic , Epigenomics/methods , RNA/genetics , Software , Chromatin Immunoprecipitation , Chromosome Mapping/methods , Gene Expression , High-Throughput Nucleotide Sequencing , Histones/metabolism , Inbreeding , Quantitative Trait Loci , Recombination, Genetic
4.
Nat Genet ; 49(1): 46-53, 2017 01.
Article in English | MEDLINE | ID: mdl-27869827

ABSTRACT

Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ∼1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease.


Subject(s)
Cardiomyopathy, Dilated/genetics , Connectin/genetics , Genetic Variation/genetics , Heart/physiology , Animals , Cardiomyopathy, Dilated/pathology , Case-Control Studies , Cohort Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Rats
5.
Biol Sex Differ ; 7: 10, 2016.
Article in English | MEDLINE | ID: mdl-26848384

ABSTRACT

BACKGOUND: The male-specific region of chromosome-Y (MSY) contributes to phenotypes outside of testis development and has a high rate of evolution between mammalian species. With a lack of genomic crossover, MSY is one of the few genomic areas under similar variation and evolutionary selection in inbred and outbred animal populations, allowing for an assessment of evolutionary mechanisms to translate between the populations. METHODS: Using next-generation sequencing, MSY consomic strains, molecular characterization, and large-scale phenotyping, we present here regions of MSY that contribute to inbred strain phenotypes. RESULTS: We have shown that (1) MSY of rat has nine autosomal gene transposition events with strain-specific selection; (2) sequence variants in MSY occur with a 1.98-fold higher number of variants than other chromosomes in seven sequenced rat strains; (3) Sry, the most studied MSY gene, has undergone extensive gene duplications, driving ubiquitous expression not seen in human or mouse; (4) the expression profile of Sry in the rat is driven by the insertion of the Sry2 copy into an intron of the ubiquitously expressed Kdm5d gene in antisense orientation, but due to several loss of function mutations in the Sry2 protein, nuclear localization and transcriptional control are decreased; (5) expression of Sry copies other than Sry2 in the rat overlaps with the expression profile for human SRY; (6) gene duplications and sequence variants (P76T) of Sry can be selected for phenotypes such as high blood pressure and androgen receptor signaling within inbred mating; and most importantly, (7) per chromosome size, MSY contributes to higher strain-specific phenotypic variation relative to all other chromosomes, with 53 phenotypes showing both a male to female and consomic cross significance. CONCLUSION: The data presented supports a high probability of MSY genetic variation altering a broad range of inbred rat phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL