Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(3): 4635-4642, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36642951

ABSTRACT

The preparation of monolayers based on an organic radical and its diamagnetic counterpart has been pursued on hydrogen-terminated silicon surfaces. The functional monolayers have been investigated as solid-state metal/monolayer/semiconductor (MmS) junctions showing a characteristic diode behavior which is tuned by the electronic characteristics of the organic molecule. The eutectic gallium-indium liquid metal is used as a top electrode to perform the transport measurements and the results clearly indicate that the SOMO-SUMO molecular orbitals impact the device performance. The junction incorporating the radical shows an almost two orders of magnitude higher rectification ratio (R(|J1V/J-1V|) = 104.04) in comparison with the nonradical one (R(|J1V/J-1V|) = 102.30). The high stability of the fabricated MmS allows the system to be interrogated under irradiation, evidencing that at the wavelength where the photon energy is close to the band gap of the radical there is a clear enhancement of the photoresponse. This is translated into an increase of the photosensitivity (Sph) value from 68.7 to 269.0 mA/W for the nonradical and radical based systems, respectively.

2.
Adv Sci (Weinh) ; 9(2): e2101661, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766476

ABSTRACT

Hybrid materials taking advantage of the different physical properties of materials are highly attractive for numerous applications in today's science and technology. Here, it is demonstrated that epitaxial bi-domain III-V/Si are hybrid structures, composed of bulk photo-active semiconductors with 2D topological semi-metallic vertical inclusions, endowed with ambipolar properties. By combining structural, transport, and photoelectrochemical characterizations with first-principle calculations, it is shown that the bi-domain III-V/Si materials are able within the same layer to absorb light efficiently, separate laterally the photo-generated carriers, transfer them to semimetal singularities, and ease extraction of both electrons and holes vertically, leading to efficient carrier collection. Besides, the original topological properties of the 2D semi-metallic inclusions are also discussed. This comb-like heterostructure not only merges the superior optical properties of semiconductors with good transport properties of metallic materials, but also combines the high efficiency and tunability afforded by III-V inorganic bulk materials with the flexible management of nano-scale charge carriers usually offered by blends of organic materials. Physical properties of these novel hybrid heterostructures can be of great interest for energy harvesting, photonic, electronic or computing devices.

3.
Chem Sci ; 11(2): 516-524, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32190271

ABSTRACT

The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.

4.
Nephrol Dial Transplant ; 35(12): 2154-2160, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32003826

ABSTRACT

INTRODUCTION: Sustainable growth and environmental issues are currently a topic for all human activities, and dialysis represents a real challenge in this field because of high water and power consumption and the production of large amounts of care-related waste. In this article we describe data collection implemented in the NephroCare centres in France and the changes observed during a 13-year period regarding environmental parameters. METHODS: Monthly data collection (eco-reporting) was implemented in NephroCare centres in France in 2005. It covers three topics designed as key performance indicators (KPIs): electricity and water consumption and care-related waste production expressed, respectively, as kilowatt-hour (kWh), litres (L) and kilograms per session. We report on the three action plans (2005-10, 2011-14 and 2015-18) and changes observed during this 13-year period. RESULTS: During the period, power and water consumption declined by 29.6% (from 23.1 to 16.26 kWh/session) and 52% (from 801 to 382 L/session), respectively. At the same time, the yearly number of dialysis sessions has increased from 169 335 to 399 336. The sources of savings came both from improvements in the dialysis technology (dialysis machines and water treatment systems) and from updating and remodelling of the dialysis unit equipment and buildings. The care-related waste decreased from 1.8 to 1.1 kg because of regular staff training and the retrofiltration system, allowing the voiding of the remaining saline solution after dialysis. These savings have been estimated as equivalent to 102 440 tons of carbon dioxide. DISCUSSION: Implementation of KPIs and their regular monitoring by trained staff to evaluate water and power consumption and the reduction of care-related water production are essential to implement actions to reduce the impact of dialysis on the environment. These data show the importance of water treatment and dialysis technology to decrease water and power consumption and the production of care-related waste as well as upgrading or remodelling of buildings housing dialysis units. Other measures are discussed, including the reuse of rejected water by reverse osmosis, as well as behavioural changes that are needed to reach sustainable development of dialysis. CONCLUSION: The first step to reach 'green' dialysis is to collect precise information from defined KPIs. This is the only way to design action plans to reduce the impact of dialysis therapy on the environment. Beyond this, the nephrology community must be sensitized to this challenge to be proactive and to anticipate future regulations.


Subject(s)
Conservation of Natural Resources/methods , Electric Power Supplies , Kidney Diseases/therapy , Renal Dialysis/methods , Sustainable Growth , Water Purification/methods , France/epidemiology , Humans , Kidney Diseases/epidemiology
5.
J Am Chem Soc ; 141(30): 11954-11962, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31241321

ABSTRACT

Molecular engineering of efficient HER catalysts is an attractive approach for controlling the spatial environment of specific building units selected for their intrinsic functionality required within the multistep HER process. As the {Mo3S4} core derived as various coordination complexes has been identified as one as the most promising MoSx-based HER electrocatalysts, we demonstrate that the covalent association between the {Mo3S4} core and the redox-active macrocyclic {P8W48} polyoxometalate (POM) produces a striking synergistic effect featured by high HER performance. Various experiments carried out in homogeneous conditions showed that this synergistic effect arises from the direct connection between the {Mo3S4} cluster and the toroidal {P8W48} units featured by a stoichiometry that can be tuned from two to four {Mo3S4} cores per {P8W48} unit. In addition, we report that this effect is preserved within heterogeneous photoelectrochemical devices where the {Mo3S4}-{P8W48} (thio-POM) assembly was used as cocatalyst (cocat) onto a microstructured p-type silicon. Using a drop-casting procedure to immobilize cocat onto the silicon interface led to high initial HER performance under simulated sunlight, achieving a photocurrent density of 10 mA cm-2 at +0.13 V vs RHE. Furthermore, electrostatic incorporation of the thio-POM anion cocat into a poly(3,4-ethylenedioxythiophene) (PEDOT) film is demonstrated to be efficient and straightforward to durably retain the cocat at the interface of a micropyramidal silicon (SimPy) photocathode. The thio-POM/PEDOT-modified photocathode is able to produce H2 under 1 Sun illumination at a rate of ca. 100 µmol cm-2 h-1 at 0 V vs RHE, highlighting the excellent performance of this photoelectrochemical system.

6.
ACS Omega ; 3(10): 13837-13849, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458082

ABSTRACT

Silicon photocathodes coated with drop-casted {Mo3S4}-based polyoxothiometalate assemblies are demonstrated to be effective for sunlight-driven hydrogen evolution reaction (HER) in acid conditions. These photocathodes are catalytically more efficient than that coated with the parent thiomolybdate incorporating an organic ligand, as supported by a higher onset potential and a lower overvoltage at 10 mA cm-2. At pH 7.3, the trend is inversed and the beneficial effect of the polyoxometalate for the HER is not observed. Moreover, the polyoxothiometalate-modified photocathode is found to be also more stable under acid conditions and can be operated at the light-limited catalytic current for more than 40 h. Furthermore, X-ray photoelectron spectroscopy and atomic force microscopy measurements indicate that the cathodic polarization of both photocathodes leads to the release of a large amount of the deposited material into the electrolyte solution concomitantly with the formation of mixed valence species {Mo(IV)3-x Mo(III) x O4-n S n }(4-x)+ resulting from the replacement of S2- sulfido ligands in the cluster by oxo O2- groups; these combined effects are shown to be beneficial for the photoelectrocatalysis.

7.
Langmuir ; 33(35): 8693-8699, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28648074

ABSTRACT

Boronic acid monolayers covalently bound to hydrogen-terminated Si(111) surfaces have been prepared from the UV-directed hydrosilylation reaction of 4-vinylbenzeneboronic acid. X-ray photoelectron spectroscopy (XPS) analysis of the modified surface revealed characteristic peaks from the attached organic molecule with the expected molecular composition and without the oxidation of underlying silicon. From XPS data, the surface coverage was estimated to be ca. 0.34 ± 0.04 ethylbenzene boronic acid chain per surface silicon atom (i.e., (4.4 ± 0.5) × 10-10 mol cm-2), which is consistent with a densely packed monolayer. The electrochemical impedance spectroscopy measurements performed at pH 7.4 in the presence of the Fe(CN)63-/Fe(CN)64- reporter couple showed specific dopamine-induced changes as a result of the binding of the guest molecule to the immobilized boronate species. The charge-transfer resistance (Rct) was found to decrease from 4.9 MΩ to 14 kΩ upon increasing the dopamine concentration in the range of 10 µM-1 mM. Furthermore, the presence of the interfering ascorbic acid until a concentration of 10 mM did not significantly change the electrochemical response of the functionalized surface. Comparative electrochemical data obtained at the reference ethylbenzene monolayer provided clear evidence that the immobilized boronic acid units were responsible for the observed changes.


Subject(s)
Boronic Acids/chemistry , Dopamine , Oxides , Photoelectron Spectroscopy , Silicon
8.
Langmuir ; 32(45): 11728-11735, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27779889

ABSTRACT

The electroless deposition of Pt nanoparticles (NPs) on hydrogen-terminated silicon (H-Si) surfaces is studied as a function of the temperature and the immersion time. It is demonstrated that isolated Pt structures can be produced at all investigated temperatures (between 22 and 75 °C) for short deposition times, typically within 1-10 min if the temperature is 45 °C or less than 5 min at 75 °C. For longer times, dendritic metal structures start to grow, ultimately leading to highly rough interconnected Pt networks. Upon increasing the temperature from 22 to 75 °C and for an immersion time of 5 min, the average size of the observed Pt NPs monotonously increases from 120 to 250 nm, and their number density calculated using scanning electron microscopy decreases from (4.5 ± 1.0) × 108 to (2.0 ± 0.5) × 108 Pt NPs cm-2. The impact of both the morphology and the distribution of the Pt NPs on the photoelectrocatalytic activity of the resulting metallized photocathodes is then analyzed. Pt deposited at 45 °C for 5 min yields photocathodes with the best electrocatalytic activity for the hydrogen evolution reaction. Under illumination at 33 mW cm-2, this optimized photoelectrode shows a fill factor of 45%, an efficiency (η) of 9.7%, and a short-circuit current density (|Jsc|) at 0 V versus a reversible hydrogen electrode of 15.5 mA cm-2.

9.
ACS Appl Mater Interfaces ; 8(37): 24810-8, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27575424

ABSTRACT

Macroporous layers are grown onto n-type silicon by successive photoelectrochemical etching in HF-containing solution and chemical etching in KOH. This specific latter treatment gives highly antireflective properties of the Si surface. The duration of the chemical etching is optimized to render the surface as absorbent as possible, and the morphology of the as-grown layer is characterized by scanning electron microscopy. Further functionalization of such structured Si surface is carried out by atomic layer deposition of a thin conformal and homogeneous TiO2 layer that is crystallized by an annealing at 450 °C. This process allows using such surfaces as photoanodes for water oxidation. The 40 nm thick TiO2 film acts indeed as an efficient protective layer against the photocorrosion of the porous Si in KOH, enhances its wettability, and improves the light absorption of the photoelectrode. The macroporous dual-absorber TiO2/Si has a beneficial effect on water oxidation in 1 M KOH and leads to a considerable negative shift of the onset potential of ∼400 mV as well as a 50% increase in photocurrent at 1 V vs SCE.

10.
Chem Rev ; 116(8): 4808-49, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27064580

ABSTRACT

This review provides a comprehensive survey of the derivatization of hydrogen-terminated, oxide-free silicon surfaces with electroactive assemblies (from molecules to polymers) attached through strong interactions (covalent, electrostatic, and chimisorption). Provided that surface modification procedures are thoroughly optimized, such an approach has appeared as a promising strategy toward high-quality functional interfaces exhibiting excellent chemical and electrochemical stabilities. The attachment of electroactive molecules exhibiting either two stable redox states (e.g., ferrocene and quinones) or more than two stable redox states (e.g., metalloporphyrins, polyoxometalates, and C60) is more particularly discussed. Attention is also paid to the immobilization of electrochemically polymerizable centers. Globally, these functional interfaces have been demonstrated to show great promise for the molecular charge storage and information processing or the elaboration of the electrochemically switchable devices. Besides, there are also some relevant examples dealing with their activity for other fields of interest, such as sensing and electrochemical catalysis.

11.
Chem Commun (Camb) ; 51(55): 11115-8, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26074477

ABSTRACT

A new approach for the design of logic gates that do not involve chemical inputs is presented here. This concept is based on the polarization of a light-sensitive interface. AND and OR logic gates, working with cheap reactants, which locally triggered water splitting half reactions, were designed and operated.

12.
Langmuir ; 31(9): 2714-21, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25710809

ABSTRACT

We report the formation of covalently bound alkyl layers onto oxidized Pt (PtOx) substrates by reaction with 1-alkenes as a novel way to bind organic molecules to metal surfaces. The organic layers were characterized by static contact angle, infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The grafted alkyl layers display a hydrolytic stability that is comparable to that of alkyl thiols on Au. PtOx-alkene attachment is compatible with terminal ester moieties enabling further anchoring of functional groups, such as redox-active ferrocene, and thus has great potential to extend monolayer chemistry on noble metals.

13.
Langmuir ; 30(24): 7235-43, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24885588

ABSTRACT

The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 µm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 µm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

15.
Chemistry ; 19(38): 12748-58, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23929495

ABSTRACT

The synthesis of an anthracene-bearing photoactive barbituric acid receptor and its subsequent grafting onto azide-terminated alkanethiol/Au self-assembled monolayers by using an Cu(I) -catalyzed azide-alkyne reaction is reported. Monolayer characterization using contact-angle measurements, electrochemistry, and spectroscopic ellipsometry indicate that the monolayer conversion is fast and complete. Irradiation of the receptor leads to photodimerization of the anthracenes, which induces the open-to-closed gating of the receptor by blocking access to the binding site. The process is thermally reversible, and polarization-modulated IR reflection-absorption spectroscopy indicates that photochemical closure and thermal opening of the surface-bound receptors occur in 70 and 100 % conversion, respectively. Affinity of the open and closed surface-bound receptor was characterized by using force spectroscopy with a barbituric-acid-modified atomic force microscope tip.

16.
ACS Appl Mater Interfaces ; 5(2): 338-43, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23273214

ABSTRACT

The deposition of gold and platinum nanoparticles (NPs) on hydrogen-terminated Si(100) (Si(100)-H) surfaces has been performed by galvanic displacement using fluoride-free sub-millimolar metallic salt solutions. The scanning electron microscopy (SEM) images showed the formation of oblate hemispherical NPs, with an average diameter of ca. 40 nm and an average height of 20 ± 10 and 10 ± 5 nm for Au and Pt, respectively. Furthermore, the calculated number density was (6.0 ± 0.8) × 10(9) Au NPs cm(-2) and (6.6 ± 1.3) × 10(9) Pt NPs cm(-2) with a larger size distribution measured for Au NPs. The Au 4f and Pt 4f X-ray photoelectron spectra of the metallized surfaces were characterized by a principal component corresponding to either the metallic gold or platinum. However, two other components located at higher binding energies were also visible and ascribed to gold or platinum silicides. Using this fluoride-free deposition process and a "reagentless" UV photolithography technique, we have also demonstrated that it was possible to prepare metallic NP micropatterns. Following this approach, single metal (Au) and two metals (Au and Pt) patterns have been produced and characterized by energy-dispersive X-ray spectroscopy (EDS) which revealed the presence of the expected metal(s). Such metallic NP micropatterned surfaces were used as photocathodes for H(2) evolution from water as a proof-of-concept experiment. These electrodes exhibited much higher electrocatalytic performance than that of nonmetallized Si(100)-H, both in the absence of light and under illumination. The overpotential for hydrogen evolution was significantly decreased by ca. 450 mV with respect to Si(100)-H (measured for a current density of 0.1 mA cm(-2)) under identical illumination conditions.

17.
Langmuir ; 28(7): 3453-9, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22272686

ABSTRACT

Tetrathiafulvalene (TTF) monolayers covalently bound to oxide-free hydrogen-terminated Si(100) surfaces have been prepared from the hydrosilylation reaction involving a TTF-terminated ethyne derivative. FTIR spectroscopy characterization using similarly modified porous Si(100) substrates revealed the presence of vibration bands assigned to the immobilized TTF rings and the Si-C═C- interfacial bonds. Cyclic voltammetry measurements showed the presence of two reversible one-electron systems ascribed to TTF/TTF(.+) and TTF(.+)/TTF(2+) redox couples at ca. 0.40 and 0.75 V vs SCE, respectively, which compare well with the values determined for the electroactive molecule in solution. The amount of immobilized TTF units could be varied in the range from 1.7 × 10(-10) to 5.2 × 10(-10) mol cm(-2) by diluting the TTF-terminated chains with inert n-decenyl chains. The highest coverage obtained for the single-component monolayer is consistent with a densely packed TTF monolayer.

18.
Chem Commun (Camb) ; 47(9): 2547-9, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21221431

ABSTRACT

The formation of covalent C(60) monolayers through [4+2] Diels-Alder cycloaddition between C(60) and anthracene monolayers grafted onto a silicon oxide surface was investigated by ellipsometry, fluorescence and by atomic force microscopy.

19.
Acc Chem Res ; 43(12): 1509-18, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20949977

ABSTRACT

The combination of monocrystalline silicon's well-defined structure and the ability to prepare hydrogen-terminated surfaces (Si-H) easily and reproducibly has made this material a very attractive substrate for immobilizing functional molecules. The functionalization of Si-H using the covalent attachment of organic monolayers has received intense attention due to the numerous potential applications of controlled and robust organic/Si interfaces. Researchers have investigated these materials in diverse fields such as molecular electronics, chemistry, and bioanalytical chemistry. Applications include the preparation of surface insulators, the incorporation of chemical or biochemical functionality at interfaces for use in photovoltaic conversion, and the development of new chemical and biological sensing devices. Unlike those of gold, silicon's electronic properties are tunable, and researchers can directly integrate silicon-based devices within electronic circuitry. Moreover, the technological processes used for the micro- and nanopatterning of silicon are numerous and mature enough for producing highly miniaturized functional electronic components. In this Account, we describe a powerful approach that integrates redox-active molecules, such as ferrocene, onto silicon toward electrically addressable systems devoted to information storage or transfer. Ferrocene exhibits attractive electrochemical characteristics: fast electron-transfer rate, low oxidation potential, and two stable redox states (neutral ferrocene and oxidized ferrocenium). Accordingly, ferrocene-modified silicon surfaces could be used as charge storage components with the bound ferrocene center as the memory element. Upon application of a positive potential to silicon, ferrocene is oxidized to its corresponding ferrocenium form. This redox change is equivalent to the change of a bit of information from the "0" to "1" state. To erase the stored charge and return the device to its initial state, a low potential must be applied to reduce the whole generated ferrocenium. In this type of application, the electron is transferred from the ferrocene headgroups to the underlying conducting silicon surface by a tunneling process across the monolayer. To produce a stable and reproducible electrical response, this process must be efficient, fast, and reversible. The stability, charge density, and capacitance performances of high-quality ferrocene-terminated monolayers could compete with those of the existing semiconductor-based memory devices, such as dynamic random access memories, DRAMs. Moreover, we provide experimental evidence that a series of immobilized ferrocene centers can efficiently communicate via a lateral electron hopping process. Using these modified interfaces, we demonstrate that the thin redox-active monolayer can behave as a purely conducting material, highlighting an unprecedented very fast electron communication between immobilized redox groups. Perhaps more importantly, the surface coverage of ferrocene allows us to precisely control the rate of this process. Such characteristics are relevant not only for electrocatalytic reactions but also for widening the potential applications of these assemblies to novel molecular electronic devices (e.g. chemiresistors, chemically sensitive field-effect transistors (CHEMFETs)) and redox chemistry on insulating surfaces.

20.
ACS Appl Mater Interfaces ; 2(3): 691-702, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20356270

ABSTRACT

New cobalt(III) bis(dicarbollide) complexes covalently linked to two 2-oligothienyl units have been synthesized and electropolymerized in acetonitrile electrolyte in order to produce the corresponding polythiophene films containing in-chain metallic centers. The polymer films electrogenerated from the bithienyl (4b) and terthienyl (4c) derivatives display redox processes attributed to the Co(III)/Co(II) couple at ca. -1.1 V vs SCE and to the p-doping/undoping of the expected quaterthienyl and sexithienyl segments at ca. 0.8 V vs SCE. In contrast, the anodic oxidation of the thienyl (4a) derivative leads to passivation of the electrode surface. As the length of the oligothiophene substituents increases, the metallic and dicarbollide cage carbon atoms contributions in the HOMO decrease dramatically so that the highest occupied frontier orbitals of 4b and 4c can be considered as almost purely oligothiophene-based. From further UV-vis spectroscopy analysis, it is demonstrated that the polymer incorporating the sexithienyl segments is more conjugated than that with the quaterthienyl segments as the absorption maximum for the interband pi-pi* transition was observed at 410 and 448 nm for poly(4b) and poly(4c) respectively. Furthermore, these polymers display a more extended degree of conjugation than the parent oligothiophenes. Such features indicate a significant electronic delocalization through the cobaltabisdicarbollide moiety. Their conducting probe atomic force microscopy characterization indicates that poly(4b) and poly(4c) behave like heavily doped semiconductors rather than pure semiconductors. Mean conductivity values extracted from the current-voltage profiles are 1.4 x 10(-4) and 7.5 x 10(-4) S cm(-1) for poly(4b) and poly(4c), respectively. Such materials are found to be efficient for the electrocatalytic reduction of protons to dihydrogen, as exemplified for poly(4b). The overpotential for hydrogen evolution is significantly decreased by ca. 230 mV with respect to that obtained with the bare electrode (measured for a current density of 1.4 mA cm(-2) in the presence of 20 mM HBF(4)).

SELECTION OF CITATIONS
SEARCH DETAIL
...