Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Invest New Drugs ; 37(6): 1135-1145, 2019 12.
Article in English | MEDLINE | ID: mdl-30778887

ABSTRACT

Among the acquired modifications in cancer cells, changes in lysosomal phenotype and functions are well described, making lysosomes a potential target for novel therapies. Some weak base lipophilic drugs have a particular affinity towards lysosomes, taking benefits from lysosomal trapping to exert anticancer activity. Here, we have developed a new lysosomotropic small molecule, GNS561, and assessed its activity in multiple in vitro intrahepatic cholangiocarcinoma models (HuCCT1 and RBE cell lines and patient-derived cells) and in a chicken chorioallantoic membrane xenograft model. GNS561 significantly reduced cell viability in two intrahepatic cholangiocarcinoma cell lines (IC50 of 1.5 ± 0.2 µM in HuCCT1 and IC50 of 1.7 ± 0.1 µM in RBE cells) and induced apoptosis as measured by caspases activation. We confirmed that GNS561-mediated cell death was related to its lysosomotropic properties. GNS561 induced lysosomal dysregulation as proven by inhibition of late-stage autophagy and induction of a dose-dependent build-up of enlarged lysosomes. In patient-derived cells, GNS561 was more potent than cisplatin and gemcitabine in 2/5 and 1/5 of the patient-derived cells models, respectively. Moreover, in these models, GNS561 was potent in models with low sensitivity to gemcitabine. GNS561 was also efficient in vivo against a human intrahepatic cholangiocarcinoma cell line in a chicken chorioallantoic membrane xenograft model, with a good tolerance at doses high enough to induce an antitumor effect in this model. In summary, GNS561 is a new lysosomotropic agent, with an anticancer activity against intrahepatic cholangiocarcinoma. Further investigations are currently ongoing to fully elucidate its mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Lysosomes/metabolism , Animals , Bile Duct Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chick Embryo , Cholangiocarcinoma/metabolism , Humans
2.
Nat Commun ; 9(1): 2093, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844425

ABSTRACT

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , DNA Helicases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Testis/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Antigens, Surface/metabolism , Apoptosis Regulatory Proteins/genetics , Carrier Proteins/genetics , Cell Line , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Membrane Proteins/metabolism , Protein Binding , Protein Folding , Protein Structure, Secondary , Signal Transduction
3.
PLoS One ; 9(10): e110316, 2014.
Article in English | MEDLINE | ID: mdl-25360666

ABSTRACT

Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioblastoma/metabolism , Glioblastoma/pathology , Proteomics/methods , Sialoglycoproteins/metabolism , Adult , Aged , Biotinylation , Brain Neoplasms/genetics , Female , Gene Expression Profiling , Glioblastoma/genetics , Humans , Male , Mass Spectrometry , Middle Aged , N-Acetylneuraminic Acid/metabolism , Pregnancy , Protein Transport , Sialoglycoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL