Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(10): 105042, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36124235

ABSTRACT

Calcineurin (CN) inhibitors currently used to avoid transplant rejection block the activation of adaptive immune responses but also prevent the development of tolerance toward the graft, by directly inhibiting T cells. CN, through the transcription factors of the NFAT family, plays an important role also in the differentiation dendritic cells (DCs), the main cells responsible for the activation of T lymphocytes. Therefore, we hypothesized that the inhibition of CN only in DCs and not in T cells could be sufficient to prevent T cell responses, while allowing for the development of tolerance. Here, we show that inhibition of CN/NFAT pathway in innate myeloid cells, using a new nanoconjugate capable of selectively targeting phagocytes in vivo, protects against graft rejection and induces a longer graft acceptance compared to common CN inhibitors. We propose a new generation of nanoparticles-based selective immune suppressive agents for a better control of transplant acceptance.

2.
Front Pharmacol ; 13: 806010, 2022.
Article in English | MEDLINE | ID: mdl-35600887

ABSTRACT

The anti-inflammatory activity of coffee extracts is widely recognized and supported by experimental evidence, in both in vitro and in vivo settings, mainly murine models. Here, we investigated the immunomodulatory properties of coffee extracts from green (GCE) and medium-roasted (RCE) Coffea canephora beans in human macrophages. The biological effect of GCE and RCE was characterized in LPS-stimulated THP-1-derived human macrophages (TDM) as a model of inflammation. Results showed decreased amounts of TNF-α, IL-6 and IL-1ß and a strong dose-dependent inhibition of interferon-ß (IFN-ß) release. Molecular mechanism of IFN-ß inhibition was further investigated by immunofluorescence confocal microscopy analysis that showed a diminished nuclear translocation of p-IRF-3, the main transcription factor responsible for IFN-ß synthesis. The inhibition of IFN-ß release by RCE and GCE was also confirmed in human primary CD14+ monocytes-derived macrophages (MDM). The main component of coffee extracts, 5-O-caffeoylquinic acid (5-CQA) also inhibited IFN-ß production, through a mechanism occurring downstream to TLR4. Inhibition of IFN-ß release by coffee extracts parallels with the activity of their main phytochemical component, 5-CQA, thus suggesting that this compound is the main responsible for the immunomodulatory effect observed. The application of 5-CQA and coffee derived-phytoextracts to target interferonopathies and inflammation-related diseases could open new pharmacological and nutritional perspectives.

3.
Eur J Clin Pharmacol ; 76(3): 409-418, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31982922

ABSTRACT

PURPOSE: The partial ineffectiveness and side effects of inflammatory bowel disease (IBD) current therapies drive basic research to look for new therapeutic target in order to develop new drug lead. Considering the pivotal role played by toll-like receptors (TLRs) in gut inflammation, we evaluate here the therapeutic effect of the synthetic glycolipid TLR4 antagonist FP7. METHODS: The anti-inflammatory effect of FP7, active as TLR4 antagonist, was evaluated on peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients, and in a mouse model of ulcerative colitis. RESULTS: FP7 strongly reduced the inflammatory responses induced by lipopolysaccharide (LPS) in vitro, due to its capacity to compete with LPS for the binding of TLR4/MD-2 receptor complex thus inhibiting both the MyD88- and TRIF-dependent inflammatory pathways. Colitic mice treated with FP7 exhibit reduced colonic inflammation and decreased levels of pro-inflammatory cytokines. CONCLUSIONS: This study suggests that TLR4 chemical modulation can be an effective therapeutic approach to IBD. The selectivity of FP7 on TLR4 makes this molecule a promising drug lead for new small molecules-based treatments.


Subject(s)
Colitis, Ulcerative/drug therapy , Glycolipids/therapeutic use , Toll-Like Receptor 4/metabolism , Adult , Animals , Cells, Cultured , Colitis, Ulcerative/metabolism , Colon/drug effects , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Mice , Middle Aged , Young Adult
4.
Bioconjug Chem ; 30(6): 1649-1657, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31136151

ABSTRACT

Endotoxin (lipooligosaccharide, LOS, and lipopolysaccharide, LPS) is the major molecular component of Gram-negative bacteria outer membrane, and very potent pro-inflammatory substance. Visualizing and tracking the distribution of the circulating endotoxin is one of the fundamental approaches to understand the molecular aspects of infection with subsequent inflammatory and immune responses, LPS also being a key player in the molecular dialogue between microbiota and host. While fluorescently labeled LPS has previously been used to track its subcellular localization and colocalization with TLR4 receptor and downstream effectors, our knowledge on lipopolysaccharide (LOS) localization and cellular activity remains almost unexplored. In this study, LOS was labeled with a novel fluorophore, Cy7N, featuring a large Stokes-shifted emission in the deep-red spectrum resulting in lower light scattering and better imaging contrast. The LOS-Cy7N chemical identity was determined by mass spectrometry, and immunoreactivity of the conjugate was evaluated. Interestingly, its application to microscopic imaging showed a faster cell internalization compared to LPS-Alexa488, despite that it is also CD14-dependent and undergoes the same endocytic pathway as LPS toward lysosomal detoxification. Our results suggest the use of the new infrared fluorophore Cy7N for cell imaging of labeled LOS by confocal fluorescence microscopy, and propose that LOS is imported in the cells by mechanisms different from those responsible for LPS uptake.


Subject(s)
Bacteria/metabolism , Carbocyanines/chemistry , Lipopolysaccharides/chemical synthesis , Microscopy/methods , Endocytosis , Fluorescent Dyes/chemistry , In Vitro Techniques , Toll-Like Receptor 4/metabolism
5.
Int J Biol Macromol ; 119: 1027-1035, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30098357

ABSTRACT

Acetobacter pasteurianus is an acetic acid-producing Gram-negative bacterium commonly found associated with plants and plant products and widely used in the production of fermented foods, such as kefir and vinegar. Due to the acid conditions of the bacterium living habitat, uncommon structural features composing its cell envelope are expected. In the present work we have investigated the A. pasteurianus CIP103108 lipopolysaccharide (LPS) structure and immunoactivity. The structure of the lipid A and of two different O-polysaccharides was assessed. Furthermore, immunological studies with human cells showed a low immunostimulant activity of the isolated LPS, in addition to a slight capability to lower the NF-kB activation upon stimulation by toxic LPS.


Subject(s)
Acetobacter/chemistry , Inflammation Mediators/chemistry , Inflammation Mediators/pharmacology , Lipopolysaccharides/chemistry , Lipopolysaccharides/pharmacology , Fatty Acids/chemistry , Humans , Inflammation Mediators/isolation & purification , Lipid A/chemistry , Lipopolysaccharides/immunology , Lipopolysaccharides/isolation & purification , Magnetic Resonance Spectroscopy , Monosaccharides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Tandem Mass Spectrometry , Toll-Like Receptor 4/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...